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Abstract: Climate change is increasingly disrupting evolved life history strategies and reducing 19 
population viability in wild species. Using estimates of epigenetic age acceleration, a cellular 20 
biomarker of lifetime stress and the expression of age-related phenotypes, we found that polar 21 
bears aged approximately one year faster for each degree of warming since the 1960s. Age 22 
acceleration was also associated with reproducing early in life, linking this cellular process to 23 
well-established life history theory. However, we found evidence for the erosion of fitness as 24 
epigenetic aging accelerated and temperatures increased. Finally, using a large pedigree, we 25 
found adaptive potential in our study population was approximately zero. Global temperatures 26 
will soon reach the levels of warming currently experienced by Arctic species, which could 27 
impose widespread physiological costs and limit adaptive capacities worldwide. 28 
  29 
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Main Text: 30 

Introduction 31 

Climate change is causing extreme environmental fluctuations and persistent warming, exposing 32 
species to conditions increasingly distant from those they evolved to tolerate(1). Species have 33 
typically responded to changes in climate through range shifts(2), changes in seasonally timed 34 
behaviours(3), and population declines(4). However, the accumulation of our past emissions and 35 
current emission targets commits the planet to ongoing warming for the foreseeable future(5). 36 
This means the persistence of many species will ultimately depend on their capacity to adapt to 37 
the rapidly changing environment. 38 

Here, we document the parallel acceleration of biological aging, a biomarker of 39 
cumulative lifetime exposure to stressors, and the erosion of fitness across more than a half-40 
century of recent climate change in an intensively studied polar bear (Ursus maritimus) 41 
population (Fig. 1). Given that the planet will likely continue to warm for several centuries 42 
regardless of near-term emission reductions(6), we then explore the capacity of polar bears in our 43 
study population to adapt to future climate change by estimating adaptive potential (Figure 1). 44 
The Arctic has warmed approximately four times faster than the global mean and is now 3°C 45 
warmer, on average, than at the onset of rapid warming(7). If current emission targets are met, 46 
the rest of the planet will have warmed by ~3°C by the end of the century(8). Our findings thus 47 
provide insight into organismal decline due to climate change at the cellular level and whether 48 
we might expect widespread adaptive change by populations to levels of warming that will soon 49 
be reached globally, particularly for species adapted to narrow climatic conditions. 50 

The western Hudson Bay polar bear population is at the southern edge of the species 51 
range and has been subject to standardized annual sampling and individual-based monitoring 52 
since 1980. Polar bears rely on sea ice for travel, mating, and as a platform to hunt their primary 53 
prey, ringed (Pusa hispida) and bearded (Erignathus barbatus) seals. After sea ice retreats in 54 
spring, their prey becomes inaccessible, and polar bears must fast, relying on accumulated fat 55 
reserves for growth, reproduction, and survival(9). As a result of air and sea surface temperature 56 
anomalies associated with warming(10), the ice-free season in the Hudson Bay region has 57 
lengthened by approximately ten days per decade since the early 1980s(11, 12). During this time, 58 
the western Hudson Bay polar bear population declined by 35%(11). Sea ice loss is firmly linked 59 
to this decline and is the most significant climate-related threat to this population(11–15). Longer 60 
ice-free seasons increase the bears' fasting period on land, and each additional day of fasting 61 
requires metabolizing approximately one kilogram of body mass(16). Bears also risk losing 62 
stored body mass as thinning winter ice and rapid spring melts force longer swims between ice 63 
floes. Swimming is five times more energetically expensive for bears than walking, and 64 
dramatically longer swims are required for even small changes in sea ice(17). 65 

Accelerated aging with climate warming 66 

In 1956, Hans Selye observed that 'Every stress leaves an indelible scar, and the organism pays 67 
for its survival after a stressful situation by becoming a little older'(18). This notion predicts that 68 
exposure to stress across lifetimes should increase biological aging rates, which should, in turn, 69 
reduce fitness. Biomedical research has since established that an organism's cumulative 70 
experience of stressful environmental conditions is indeed reflected in its biological age. When 71 
an organism experiences excess stress, molecular wear and tear make its cells biologically older 72 
than their chronological age suggests. This phenomenon, known as biological age acceleration, is 73 
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associated with age-related declines in health and well-being in humans and lab animals(19, 20). 74 
If climate warming accelerates the onset of age-related phenotypes through cumulative lifetime 75 
stress in wild populations, fitness declines should follow, affecting their capacity to adapt to 76 
changing environments.  77 

We measured biological age acceleration in western Hudson Bay polar bears using an 78 
epigenetic approach recently developed in biomedicine(21–23). Epigenetic age acceleration is 79 
the residual difference from the linear relationship between chronological and epigenetic 80 
age(24). This makes it a consistent estimate of biological age acceleration across chronological 81 
ages. Faster epigenetic aging is associated with the expression of age-related phenotypes(25), but 82 
understanding causal links between epigenetic aging and the aging process is an active area of 83 
research(26). For example, epigenetic aging has been associated with some of the classic 84 
hallmarks of aging, such as deteriorating mitochondrial function, nutrient sensing, and stem cell 85 
composition, but not with other aspects of aging, such as cellular senescence, telomere 86 
shortening, or genomic stability(27–29). Regardless of the cellular mechanisms underlying 87 
epigenetic age acceleration, it is a reliable biomedical measure of cumulative experiences of 88 
environmental stressors across lifetimes(30–32), increasing, for example, in humans in response 89 
to smoking(21), early life adversity(33), and declining physical health(22). Epigenetic age 90 
acceleration is also one of the best biomarkers of morbidity and all-cause mortality in 91 
humans(34, 35). In non-human wild animals, epigenetic age acceleration slows during 92 
hibernation(36) and has been linked to individual rank in social groups(37). 93 

Epigenetic age is measured through DNA methylation, a process in which methyl groups 94 
are bound to DNA at cytosine guanine dinucleotides (CpG or CG sites)(19). This process plays a 95 
role in cell fate and gene regulation(38). DNA methylation patterns at some CpG sites change so 96 
predictably across lifespans that they can be used to build “epigenetic clocks” for predicting 97 
chronological age in humans(24), mice(39), and many other mammals(40–45). Epigenetic clocks 98 
predict chronological age two- to three-fold more accurately than earlier biological aging 99 
approaches such as telomere shortening(46). Critical for our purposes, epigenetic age 100 
acceleration can be estimated from archived tissue sampled from individuals with known 101 
chronological ages(24). Archived samples are available for the western Hudson Bay population 102 
dating back to the 1980s, providing a lens through which we could view changes in the 103 
accumulation of stress across lifetimes in polar bears, starting before the onset of significant 104 
climate warming through the recent period of rapid warming. 105 

We built an epigenetic clock for polar bears with archived tissue samples (Methods – 106 
Building the epigenetic clock for polar bears). Our clock (Data S1) is based on blood and skin 107 
tissue DNA methylation measurements from 144 male and female individuals evenly sampled 108 
across ages 0–30 between 1988–2016 (Data S2; Methods – Field data collection). We used 109 
epigenome-wide association surveys followed by elastic net regression to identify 125 CpG sites 110 
whose values can be used to calculate epigenetic age in polar bears. We narrowed these sites 111 
down from an initial 33,674 candidate CpG sites from the mammalian DNA methylation array of 112 
highly conserved regions(47) that align to the polar bear genome (Data S3). The selected sites 113 
were strongly associated with chronological age but unrelated to sex or tissue type (Fig. S1). 114 

Our clock (Fig. 2A) estimated chronological age in an independent validation set of 228 115 
samples from 162 individuals not used for clock development with a Pearson’s correlation of 116 
0.94 (5th to 95th percentile of bootstrap-sampled clocks 0.92–0.95) and a median absolute error of 117 
2 years (5th to 95th percentile of bootstrap-sampled clocks 1.74–2.44), 7–10% of the typical polar 118 
bear lifespan(48). This performance is on par with the most accurate epigenetic clocks built for 119 
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humans and other wildlife(24, 41, 42). Our polar bear clock also estimated chronological age 120 
more accurately and consistently across blood and skin samples than the recently developed 121 
universal pan-mammalian clocks(40) (Fig. S2). We used our epigenetic clock to estimate 122 
epigenetic age acceleration through time for the 162 individuals not used for clock development. 123 

We found evidence for epigenetic age acceleration through time that paralleled climatic 124 
warming and lengthening ice-free periods. Polar bears born more recently aged faster 125 
epigenetically as the climate warmed (Table 1; Fig. 3). Both males and females responded 126 
similarly (Table S1, Fig. S3), and the relationship was consistent between blood and skin tissue 127 
(Table S1, Fig. S4). On average, bears born in the 2020s were epigenetically 2.7 (interquartile 128 
range 1.4) years older than bears born in the 1960s (Fig. 3). This relationship held when we 129 
repeatedly re-sampled the training and validation data with replacement, re-fit the clock, and re-130 
analyzed the relationship between birth year and epigenetic age acceleration (Fig. S5). 131 
Considering the typical 15–20-year lifespan for polar bears in the wild(48), a 2.7-year increase in 132 
epigenetic age is equivalent to a 13.5–18% increase in lifetime aging rate.  133 

Epigenetic aging rates were consistent across individual lifetimes. Our polar bear clock 134 
accurately tracked chronological ages in individuals with repeat samples (Fig. 2B–F). We also 135 
tested whether aging rates were being overestimated because of faster epigenetic aging in 136 
younger individuals, a phenomenon known to occur in humans(49). When we refit the clock and 137 
repeated the downstream analysis using only samples from mature bears, we found the same 138 
epigenetic age acceleration through time, but the clock fit with only mature bears was less 139 
accurate than our original clock (Fig. S6). This loss of accuracy indicates that early-life 140 
epigenetic age acceleration is important for understanding age acceleration across the lifespan 141 
and that the inclusion of young bears did not adversely bias our clock. 142 

Notably, the increased aging rate we found over time is likely a conservative estimate 143 
because of our sampling approach. We evenly selected samples from individuals across age 144 
classes (Methods – Building the epigenetic clock for polar bears), but polar bear survival 145 
declines substantially as they approach their early 20s(50). In humans, epigenetic age 146 
acceleration is associated with increased morbidity and mortality(22, 25). If this association 147 
holds for polar bears, the 20–30-year-old bears available to sample were likely among the 148 
healthiest of their cohorts, meaning we likely oversampled healthy older bears and might have 149 
underestimated epigenetic age acceleration. 150 

Evolutionary change and adaptive potential 151 

We next sought to link our estimates of epigenetic age acceleration to predictions about aging 152 
rates drawn from well-established life history theory that predicts trade-offs between lifespan and 153 
investing in reproduction(51). Increased biological aging rates through time should eventually be 154 
associated with the erosion of fitness and the loss of adaptive potential as individuals express 155 
age-related phenotypes associated with reduced fitness earlier in life(51, 52). We thus also tested 156 
for fitness benefits associated with reproducing early in life and their change over time—157 
reproducing early in life should enhance lifetime reproductive success in uncertain environments 158 
where survival and reproduction later in life is uncertain. Finally, we estimated adaptive potential 159 
given we are now certain of future environmental change. 160 

We first explored relationships between epigenetic age acceleration and the timing of first 161 
reproduction. Individuals take energy and nutrients from the environment and allocate them to 162 
self-maintenance and reproduction. Resources devoted to one area are not immediately available 163 
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for the other, meaning the optimal allocation of energy to self-maintenance and reproduction 164 
depends on the ecological setting(51). Because reproduction is energetically expensive, classic 165 
life history theory predicts reproducing early will come at the expense of self-maintenance and 166 
longevity. This trade-off predicts that individuals who reproduce early in life should age faster 167 
epigenetically than those who first reproduce later. Indeed, we observed a negative relationship 168 
between mean epigenetic age acceleration and age at first reproduction for 76 bears with both 169 
estimates of age acceleration and known ages at first reproduction (Table 1; Fig. 4). This finding, 170 
predicted by well-established theory(51), suggests that epigenetic age acceleration reflects a 171 
biologically meaningful age-associated component of polar bear life histories and the energetic 172 
trade-off between the cost of early breeding and longevity. 173 

Life history theory also predicts that when environments are harsh, and survival and 174 
reproduction late in life are uncertain, we should see fitness benefits associated with investing 175 
energy in reproducing earlier in life, even if early reproduction accelerates aging(52). To explore 176 
this possibility, we tested for fitness benefits from breeding early in life(51, 52). We expected 177 
early-life reproduction to have fitness benefits for western Hudson Bay polar bears as this 178 
population experiences a harsh environment with little certainty in terms of survival and 179 
reproduction late in life. We estimated lifetime reproductive success, a common measure of 180 
fitness, for 896 individuals from the long-term study (Methods – Estimating life history traits). 181 
We found that from the 1960s through the 1980s, early reproducing bears had the highest 182 
lifetime reproductive success, suggesting that reproducing early was indeed adaptive before the 183 
onset of rapid warming (Table 1). However, the fitness advantage of reproducing early in life 184 
declined through the 1990s. By 1995, bears produced the same number of offspring over their 185 
lifetimes regardless of how young they were when they first reproduced (Fig. 5). The fitness 186 
advantage of reproducing early in life has eroded through time in parallel with warming and 187 
population-wide epigenetic age acceleration. 188 

Finally, building on associations we found between epigenetic age acceleration, reduced 189 
fitness, and the warming climate over time, we explored the overall rate of recent adaptive 190 
evolution in the western Hudson Bay polar bear population and its capacity to adapt to future 191 
environmental change. All credible climate forecasts project ongoing warming for the 192 
foreseeable future. This means the population’s persistence will depend considerably on its 193 
capacity to adapt genetically to the changing environment. We assessed the population’s 194 
adaptive potential by estimating the additive genetic variance in individual fitness, which can be 195 
thought of as the heritable genetic variation underlying the ability of individuals to 196 
reproduce(53–55). This approach cannot accurately estimate the contributions of genetic 197 
variation related to dominance and epistasis; however, most genetic variation underlying 198 
polygenic traits is additive(56). 199 

Using our estimates of lifetime reproductive success and relatedness from the 200 
population’s 4,634 individual pedigree (923 dams, 443 sires) that spanned the 60-year study(57), 201 
we fit an animal model(58) and found the additive genetic variance underlying lifetime 202 
reproductive success in this population is approximately zero (VA (w) = 0.008; Table S2). This 203 
suggests that selection on traits related to individual fitness is not contributing to adaptive change 204 
in this population and that variation in lifetime reproductive success is driven by the 205 
environment. This lack of evidence for adaptive change is consistent with observed low survival 206 
rates and the population’s recent decline(59). Many factors, including gene flow, genetic drift, 207 
mutations, and changing environments, regularly place upper limits on adaptive evolution in 208 
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natural populations(53). The magnitude and pace of climate warming appear to limit any 209 
adaptive evolution in the western Hudson Bay polar bear population. 210 

Conclusions 211 

We found parallel increases in epigenetic age acceleration in polar bears and the erosion of their 212 
fitness through time associated with climate warming. Epigenetic age acceleration is detectable 213 
at the cellular level and accumulates over time(24), making it well-suited for estimating lifetime 214 
stress associated with climate warming. We found that despite some warmer years, epigenetic 215 
age acceleration increased across polar bear lifetimes following local warming trends. As 216 
predicted for a population experiencing accelerated aging and fitness declines, current rates of 217 
environmental change appear to be outpacing adaptive evolution. With prolonged exposure to 218 
harsh environments, abundance declines(11), and little evidence for adaptive capacity, the 219 
western Hudson Bay polar bear population faces an uncertain future. 220 

Our findings of accelerated aging, the erosion of fitness with warming, and limited 221 
evidence for adaptive potential given current environmental conditions are instructive for 222 
understanding whether and how other populations might respond adaptively to environmental 223 
change in the coming decades. Warming in the Arctic has abruptly altered the ecosystem, and 224 
this abruptness has outpaced the adaptive capacity of western Hudson Bay polar bears. Recent 225 
modelling suggests that similarly abrupt exposures to intolerable temperatures across large 226 
portions of species’ ranges could be widespread in the coming decades(60). At the current rate of 227 
warming, more than 30% of species could be exposed to temperatures beyond those they evolved 228 
to tolerate by 2100(60, 61). As species pass their thermal thresholds, the capacity for populations 229 
and ecosystems to adapt will likely diminish.  230 

With the recent signing of the United Nations Montreal-Kunming Global Biodiversity 231 
Framework, monitoring and conserving adaptive potential has become mandated in international 232 
policy. This is a major positive step toward safeguarding biodiversity. Direct estimates of 233 
adaptive potential similar to ours require long-term individual-based studies of wild populations, 234 
which are very valuable and rare, particularly in polar regions, due to logistical constraints and 235 
costs associated with maintaining long-term research. Our results, and forecasts of future species 236 
exposure to warming(60, 61), warn that adaptive responses to warming could be the exception 237 
rather than the rule. Significant conservation efforts on all fronts and concerted efforts to halt 238 
warming will be necessary to safeguard biodiversity for future generations.  239 
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240 

Fig. 1. Epigenetic age acceleration from cellular stress parallels reduced fitness, limited 241 
adaptive potential, and population decline in polar bears under climate change. Global 242 
concerns over declining polar bear populations prompted the formation of an international 243 
conservation agreement for the species in the mid-1960s, initiating annual sampling and 244 
individual-based monitoring of polar bears in western Hudson Bay. Using the long-term 245 
individual-based dataset, we explored how climate warming impacted individuals and 246 
populations. Climate change increased the lifetime exposure of individuals to stress, detectable in247 
epigenetic markers from archived tissue samples. This stress also compromised fitness, reducing 248 
adaptive potential and driving population declines. 249 
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 250 

Fig. 2. The polar bear epigenetic clock tracks chronological age in the western Hudson Bay 251 
population. Epigenetic clocks estimate age using age-related methylation patterns at cytosine 252 
guanine dinucleotides on DNA molecules. The clock was developed with samples from n = 144 253 
male and female individuals aged 0–30 sampled between 1988–2018. (A) shows n = 228 254 
samples not used for clock development, aged 0–30 and sampled between 1988–2023. (B–F) 255 
show five individuals sampled repeatedly over their lifetimes. Points represent samples from 256 
blood (red) and skin (grey), the dotted lines show a 1:1 relationship between chronological and 257 
epigenetic age, and the solid lines are regression lines between epigenetic age and chronological 258 
age (median absolute error = 2 years; Pearson’s correlation 0.94). Points above this line indicate 259 
age acceleration—samples appearing epigenetically older than their chronological age. 260 
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 261 

Fig. 3. Epigenetic age, a marker of cumulative lifetime stress, has accelerated through time 262 
for polar bears in western Hudson Bay, Canada. Points are observed values of epigenetic age 263 
acceleration for n = 162 individuals born 1965–2022 and sampled between 1988 and 2023. The 264 
line and ribbon are the mean and 95% credible intervals around the posterior distribution of the 265 
Bayesian linear model (ß = 0.21, 95% credible interval 0.06, 0.36). 266 
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 267 

Fig. 4. Polar bears that first reproduced at younger ages aged faster epigenetically. Points 268 
represent observed values of epigenetic age acceleration from n = 76 individuals born 1965–269 
2010 and sampled between 1988–2016 for which age at first reproduction is known. The line and 270 
ribbon represent the mean and 95% percentile interval around the posterior distribution estimated 271 
using a Bayesian linear model (ß = -0.28, 95% credible interval -0.50, -0.06). 272 
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 273 

Fig. 5. Climate change lowered the fitness benefit of polar bears of early-age reproduction 274 
in polar bears. Reproducing at younger ages is energetically costly but confers a net fitness 275 
benefit in environments with reproductive uncertainty. Polar bears born in the 1960s in western 276 
Hudson Bay had higher lifetime reproductive success when reproducing younger (ß = -0.10, 95% 277 
credible interval = -0.15, -0.06). However, this benefit declined for bears born in later decades, 278 
disappearing entirely by the mid-1990s (ß = 0.04, 95% credible interval 0, 0.09). Points represent 279 
individual observations, and lines and ribbons are the predicted means and 95% credible 280 
intervals of the posterior distribution from the Bayesian generalized linear model.281 
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Table 1. Climate change is linked to epigenetic aging and fitness declines in an intensively studied polar bear population 
in western Hudson Bay, Canada. Bears born more recently and those that reproduce earlier in life age faster epigenetically. 
The fitness benefit of earlier reproduction, estimated using lifetime reproductive success, declined for later-born bears. We 
report the coefficients (ß) and 95% credible intervals (CrI) from Bayesian regression models testing relationships between 
epigenetic age acceleration, year of birth, age at first reproduction, and lifetime reproductive success. The probability of 
direction (P direction) describes the probability that a coefficient is either positive or negative, expressed as a percentage 
between 50% and 100%. The Bayesian R2 describes the proportion of variance explained by the model. For all models, we used 
conservative, weakly informative priors with mean = 0 and standard deviation = 1. We fit all models using the brms package 
v2.20.4 in R v4.3.1, with 4 chains and 10,000 iterations, including 5,000 warmup iterations. Posterior predictive checks are in 
Fig. S7. 
Variable Covariates ß (95% CrI) Bayesian R2 P direction 

Age acceleration§ 
(n = 162) 

Year of birth 0.21 (0.06, 0.36) 0.05 99.6% 
    

Age acceleration§ 
(n = 76) 

Age at first reproduction -0.28 (-0.50, -0.06) 0.08 99.2% 

Lifetime reproductive success† 
(n = 896) 

Age at first reproduction -0.10 (-0.15, -0.06) 0.08 100% 
Year of birth -0.17 (-0.22, -0.12) 100% 
Age at first reproduction: Year of 
birth 

0.04 (0, 0.09)  96.5% 

†Bayesian generalized linear models were specified using a negative binomial response distribution with a log link function. 
§Bayesian linear models were specified using an identity link function. .
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Materials and Methods 

Summary 

We studied biological aging, fitness, and adaptive potential in the western Hudson Bay polar 
bear (Ursus maritimus) population. Using a pedigree previously constructed for the 
population(57), we estimated ages at first reproduction and lifetime reproductive success. We 
measured biological aging by first building an epigenetic clock for polar bears and then using it 
in independent samples to gauge the rate at which the cells of individual bears from the 
population aged epigenetically relative to their chronological age. Using regression models, we 
tested for an increase in the rate of epigenetic aging over time, relationships between age at first 
reproduction and the rate of epigenetic aging, and changes in lifetime reproductive success with 
age at first reproduction over time. Finally, we used an animal model, a type of mixed-effects 
model that estimates the additive genetic variance of traits like lifetime reproductive success(2), 
to estimate the capacity of western Hudson Bay polar bears to adapt to climate change. 

Field data collection 

Since 1966, polar bears have been captured in northeastern Manitoba near Churchill, Canada, as 
part of a long-term study(57). Bears are chemically immobilized, sexed, and fitted with unique 
ear tags and tattoos on the upper lip for later identification in case of recaptures. Skin samples are 
extracted either from pinna tissue remaining after ear-tagging or using a biopsy punch of 
superficial rump fat(57). Blood samples are drawn from femoral blood into a sterile Vacutainer 
and stored at -80° C(57). All capture and handling protocols are approved annually by 
Environment and Climate Change Canada’s Prairie and Northern Region Animal Care 
Committee and wildlife research permits are issued by the Province of Manitoba and by Parks 
Canada. A standardized sampling program was initiated in 1980 and continues today, with the 
exclusion of 1985 and 1986. As part of this program, adult females and their cubs of the year are 
sampled in February and March. Chronological age is either derived from known years of birth 
for cubs-of-the-year or based on cementum annulus deposition from an extracted vestigial 
premolar tooth for bears first captured as adults(62). 

Estimating life history traits 

We estimated polar bear life history traits using previously established pedigree relationships. 
The western Hudson Bay polar bear population pedigree(57) contains 4,634 polar bears (443 
sires, 923 dams, and 1,130 founders, i.e., individuals of unknown parentage) from over six 
generations sampled between 1966 and 2016. Field sampling data from females and cubs-of-the-
year provided offspring-dam associations. Additional linkage information came from parentage 
analyses using multi-locus microsatellites to genotype individuals(57). We removed three 
individuals whose sex classifications were inconsistent with parentage data; these individuals 
were classified either as male dams or female sires. Additional information about the pedigree 
construction, capture, handling, and sampling protocols for the western Hudson Bay 
subpopulation is described in more detail in previous work(57). 

We used the pedigree to estimate lifetime reproductive success and age at first 
reproduction for all individuals who were confirmed parents of at least one other bear in the 
pedigree. We defined lifetime reproductive success as the total number of other bears in the 
pedigree for which an individual was a confirmed parent. We defined age at first reproduction as 
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the age of the individual when its first known offspring was born. In our analyses considering 
lifetime reproductive success, we removed individuals with potentially biased data, using only 
data from individuals born in 1996 or earlier (n = 896 bears). We selected this threshold because 
any bears born after 1996 would not have reached 20 years—the approximate age of senescence 
for western Hudson Bay polar bears(63)— by 2016, the year the pedigree was completed for the 
population(1). As a result, the late-life offspring of these bears might have been missed in the 
pedigree, potentially resulting in biased estimates of lifetime reproductive success. While we 
expected some error in lifetime reproductive success because of gaps in the pedigree, we 
assumed relative comparisons among individuals were unbiased up to 1996. 

Building the epigenetic clock for polar bears 

Epigenetic clocks predict chronological ages based on methylation of CpG dinucleotides, where 
a cytosine is followed by a guanine(24). Many CpGs change with chronological age. The 
Illumina HorvathMammalMethylChip40 array (Illumina Inc., San Diego, CA, USA; hereafter 
mammalian array) was designed to analyze methylation at CpG sequences highly conserved 
across all mammal species, measuring a total of 37,449 unique sequences per sample at a single 
nucleotide resolution. The high-throughput array can process 96 samples simultaneously, making 
this approach useful for aging samples from long-term ecological projects that store many 
samples over multiple years. 

To build our epigenetic clock, in 2022, we randomly selected 288 samples from 6,135 
blood and skin samples collected from western Hudson Bay polar bears aged 0–30 born from 
1965–2018. We stratified sampling based on individual age, tissue type, sex, and year of sample 
collection. We ensured some samples came from bears sampled more than once over their 
lifetimes to test for consistency in individual aging rates over time (Figure 2). To test for 
consistency in DNA methylation rates between tissues, we also included several samples with 
blood and skin collected simultaneously from the same individual. Our samples included 150 
female and 138 male samples from 223 unique individuals, of which 111 were blood and 177 
were skin. Five individuals were sampled between 4 and 13 times over their lives, and another 25 
individuals were sampled twice. In 2024, we added 96 additional samples from individuals 
sampled one time each, as recently as 2023, to extend the time frame and sample size covered. 
We used these additional samples for clock validation but not development. Details of all final 
samples used for clock development, validation, and downstream analysis are available in Data 
S2. 

We isolated genomic DNA from blood and skin samples using the Qiagen DNeasy Blood 
and Tissue Kit 250 (Qiagen, Hilden, Germany). We dissected approximately 25 mg of frozen 
skin samples on a pre-chilled plate placed on dry ice to prevent thawing of the entire tissue. We 
then cut the skin tissue into smaller pieces, placed it in 1.5 mL microcentrifuge tubes, and 
digested it overnight in Buffer ATL (Qiagen) with Proteinase K (Qiagen) solution at 56 °C. We 
also digested 50 µL volumes of blood samples in Proteinase K (Qiagen) and PBS (pH 7.4, 1X, 
Gibco) solution at 56 °C for 10 minutes. After tissue digestion, we extracted genomic DNA from 
the samples as per the manufacturer’s protocol (Document #HB-0540-002, Version #04/2016) 
and eluted the samples in two 100 µL volumes of elution buffer (Qiagen) consecutively to 
increase yield. We measured the concentration of gDNA using the NanoDrop2000 
spectrophotometer (Thermo Scientific, Wilmington, USA). Next, we treated 750 ng of each 
genomic DNA sample with sodium bisulfite using the EZ-96 DNA Methylation-Gold Kit 
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(shallow-well format) (Zymo Research, CA, USA) as per the manufacturer’s protocol 
(Document #D5007, Version #2.1.6). We eluted the bisulfite-converted DNA in 12 µL of elution 
buffer (Zymo Research), after which we amplified 4 µL from each sample to be hybridized onto 
the mammalian array following the Infinium HD Methylation Assay protocol (Document 
#15019519, Version #07). 

We measured DNA methylation by imaging the hybridized chips on the same day they 
were stained using the iScan instrument (Illumina Inc., San Diego, CA, USA). We normalized 
the raw intensity data (IDAT) files from the chip scans using the recommended pipeline in the 
minfi package(64) in Rv4.3.1(65). The code we wrote for pre-processing is available at 
https://github.com/ljnewediuk/PB_life-history. Normalized intensity data, hereafter � values, 
quantify the degree of methylation at each of the 37,449 sites on the mammal chip with a value 
between 0 for no methylation and 1 for 100% methylation at each site.  

The design of the mammalian array, while appropriate for any mammal species, presents 
some practical challenges in terms of accurately quantifying methylation in the genomes of 
specific species. First, all 37,449 CpG sequences on the array might not bind to the genomes of 
all species because of species-specific CpG differences. Alternatively, a single sequence might 
bind multiple times in the genome of a given species because probes were designed with up to 
three degenerate bases to facilitate matching in case of cross-species mutations(47). Sequences 
that bind multiple times can confound methylation signals coming from multiple sites at 
once(47). Methylation can also vary by sex if CpG sequences are located on the sex 
chromosomes(66), a particularly important concern for the mammalian array because of species-
specific locations of CpG sequences on chromosomes. 

To minimize potential confounds from sex-specific site methylation and non-binding or 
multiple-binding probes, we narrowed our probe search space before building our clock. First, 
we aligned the CpG sequences on the mammalian array to a reference polar bear genome (NCBI 
Genome assembly ASM1731132v1 
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_017311325.1/) using the QuasR package 
v1.40.1(67) in R. We selected only the 33,674 sites that bound uniquely. We also limited our 
search space with an epigenome-wide association study (EWAS), a technique which correlates 
phenotypic traits with DNA methylation. We used our EWAS to isolate sites with methylation 
patterns related to age but not different between sexes. We fit three linear models with site-
specific CpG methylation proportions as the response and combinations of age and sex as 
predictors using the limma package v3.56.2(68) in R. In the first model, we tested the effects of 
sex on methylation while controlling for ages and tissue types of samples. We also fit two 
models including only either blood or skin samples to isolate the effects of age on the proportion 
of methylation in either tissue. We excluded 3,740 CpG sequences significantly associated with 
sex (p < 0.05) and 29,573 that were not sufficiently associated with age (p > 10e-6). We 
erroneously excluded another 23 (0.007%) CpG sites. We used a final 3,328 of the 37,449 CpG 
sites on the HorvathMammalMethylChip40 array to build our clock (Data S3). 

We first screened unreliable samples from the data. We screened 12 samples because 
their scans failed on the iScan, because the samples clustered away from others in a principal 
components analysis of � values, or because the � values had high detection p-values, a quality 
control metric indicating poor discrimination of samples from background values. We plotted the 
detection p-values on the sample year to rule out any visual pattern indicating the possible 
deterioration of sample quality over time (Fig. S8). Because we included bears from a single 
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population, we were also concerned that potential relatedness between individuals used to build 
the clock might bias its predictions. We used the GeneAlEx 6.5 software(69) to assess relatedness 
between individuals using 24 microsatellites (Data S4). We removed any individuals from the 
training data with a relatedness index > 0.25. We also removed any individuals with repeat 
samples from the training data.  

We fit our DNA methylation clock (Data S1) using a training set of samples from 144 
unique individuals balanced across age, sex, and tissue type from the 278 of our initial 288 
samples that passed quality control. We fit the � ~ age clock model using the cv.glmnet function 
in the glmnet package v4.1-8(70) in R, setting � = 0.5 to combine the benefits of both ridge and 
lasso regression(24). This compromise reduces the variance in age predictions at the cost of 
some bias. We used 10-fold cross-validation to select the optimal regularization parameter(24). 
We validated our clock by using it to predict the chronological ages of all remaining 228 samples 
(hereafter the validation dataset), including the remaining n = 134 samples from the original 278 
selected in 2022 that we did not use for clock development and 94 of the 96 samples added in 
2024 that passed quality control (Data S2). CpG sites and � values for the clock are available in 
Data S1. 

We also predicted epigenetic ages in our samples using the universal clock for 
mammals(40) to ensure the predictions from this clock roughly matched our expectations of a 
linear relationship between chronological and epigenetic age (Extended Data Figures 2 & 3). Lu 
et al.(40) built two pan-tissue mammalian clocks, universal clock 2 and universal clock 3, trained 
on DNA methylation of 59 tissue types from 185 species and measured using the same 
HorvathMammalMethylChip40 array we used for our samples. The clocks include 
transformations to account for age at sexual maturity, gestation time, and maximum lifespan, 
allowing them to predict the age of any eutherian mammal species with reasonable accuracy(40). 
We aged all polar bear samples (n = 372) using universal clocks 2 and 3, excluding the 12 poor-
quality samples that did not pass quality control. 

Statistical analysis—Bayesian regression models 

We used Bayesian linear models and Bayesian generalized linear models to test for epigenetic 
age acceleration over time, for a relationship between age acceleration and age at first 
reproduction, and a relationship between age at first reproduction and lifetime reproductive 
success in the validation dataset. We fit all models using the brms package v2.20.4(71) in R, with 
four chains and 10,000 iterations, including 5,000 warmup iterations. 

For the first two models—age acceleration over time and with age at first reproduction—
we used Bayesian linear models, specifying an identity link function and weakly informative 
prior slopes with a mean of 0 and standard deviation of 1. First, we tested for a relationship 
between birth year and mean age acceleration in the n = 162 individuals from the validation 
dataset not used for clock development. We also tested for a relationship between age at first 
reproduction and mean age acceleration for n = 76 of these individuals with epigenetic age 
estimates and known offspring. 

We next tested for a relationship between age at first reproduction and lifetime 
reproductive success using a Bayesian generalized linear model. For this model, we specified a 
negative binomial response distribution with a log link function, using weakly informative prior 
slopes with a mean of 0 and a standard deviation of 1. We included n = 896 bears from the 
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pedigree born before 1996. We specified an interaction between age at first reproduction and 
birth year to test how the relationship between age at first reproduction and lifetime reproductive 
success changed over time.  

We performed two additional validations to ensure our epigenetic clock and the 
relationship we found between birth year and age acceleration were robust. First, we explored the 
possibility that faster aging in reproductively immature bears biased our estimates of age 
acceleration. In human populations, children age epigenetically faster than adults(72). Climate-
related epigenetic age acceleration could have been overestimated across lifetimes if young bears 
also age faster than adults. To explore this possibility, we created a second clock using the n = 
120 samples from our training set from polar bears older than five years, the approximate age of 
sexual maturity in this species(73) (Extended Data Figure 6 A). We then tested this clock on the 
n = 137 validation samples from bears older than 5 years. 

A different set of predictors (CpG sites) might be selected each time an epigenetic clock 
model is fit (74-75). This is because the relationship between methylation changes and epigenetic 
aging is not considered causal. The mammalian array was designed with sites having conserved 
age-related methylation patterns, meaning many different combinations of sites might predict age 
reasonably well. 

To ensure our epigenetic clock robustly predicted epigenetic age and estimated the 
relationship between epigenetic age acceleration and year of birth, regardless of which sites were 
included in the clock, we repeatedly resampled the clock and repeated the downstream analysis. 
We randomly split all n = 372 samples into 500 new training and validation sample sets, 
excluding individuals with multiple samples and siblings from the training set. We then refit the 
epigenetic clock for each sample set to estimate bootstrap confidence intervals for the clock’s 
median absolute error and Pearson’s correlation and re-tested the relationship between year of 
birth and rate of epigenetic aging. 

Statistical analysis—Animal model 

We used an animal model(58) to estimate the additive genetic variance of lifetime reproductive 
success for 896 polar bears born before 1996. We used the pedigree data to create a genetic 
relatedness matrix. We fit this matrix as the random effect ‘animal’ to estimate additive genetic 
variance (VA). Phenotypic variance (VP) is partitioned into additive genetic variance (VA) and a 
residual variance (VR) component, which is interpreted as the environmental effect. We further 
partitioned the residual variance by including maternal variance (VM, or the identity of 
individual’s dam) and cohort variance (VYBirth, or year of birth). We also included sex as a fixed 
effect in the model. We used a log link function, an inverse-Gamma distribution for the random 
effect variances, and a wide normal distribution for the prior distribution of fixed effects(76). We 
fit the animal model in the package MCMCglmm v2.35(77) in R with 1,000,000 iterations and 
20,000 warmup iterations. The MCMCglmm package allows incomplete pedigrees and uses 
Bayesian inference and Markov chain Monte Carlo (MCMC) methods. 
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Fig. S1. Overview of CpG sites included (dark grey) and excluded from the polar bear 
clock (light grey). (A) Skin sites and (B) blood sites were excluded because they were not 
significantly associated with age (p > 10-6), and (C) sites from both tissues were excluded 
because they were significantly associated with sex.  
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Fig. S2. Epigenetic age predictions of n = 372 western Hudson Bay polar bear samples 
using the universal pan-mammalian clocks(14). (A) Universal clock 2 (median absolute error 
= 7.2 years, Pearson’s correlation = 0.94) includes a correction for maximum lifespan (43.8 
years) and (B) universal clock 3 (median absolute error = 3.8 years, Pearson’s correlation = 0.90 
years) includes a correction for age at sexual maturity. Points show individual observations 
separated by blood (red) and skin (grey) tissue types. The dotted lines show a 1:1 relationship 
between chronological and epigenetic age, and the solid lines are regression lines between 
epigenetic age and chronological age. Both clocks overestimate epigenetic ages relative to the 
polar bear clock (Fig. 2), and universal clock 3’s tissue bias overestimates the ages of blood 
samples relative to skin. 
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Fig. S3. Epigenetic age accelerates with birth year for both male and female polar bears. 
Points are observed values of epigenetic age acceleration for n = 92 female (pink) and n = 70 
male (blue) individuals born 1965–2022 and sampled between 1988 and 2023. The line and 
ribbon are the mean and 95% credible intervals around the posterior distribution of the Bayesian 
linear model with an interaction between sex and birth year (model results in Table S1). 
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Fig. S4. Epigenetic age accelerates with birth year for both tissue types. Points are observed 
values of epigenetic age acceleration for n = 51 blood (red) and n = 128 skin (grey) tissue 
samples from individuals born 1965–2022 and sampled between 1988 and 2023. The line and 
ribbon are the mean and 95% credible intervals around the posterior distribution of the Bayesian 
linear model with an interaction between tissue type and birth year (model results in Table S1). 
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Fig. S5. Posterior predictive means from 500 bootstrap-sampled clocks, consistent with our 
main results. We repeatedly sampled with replacement from 372 male and female polar bear 
skin and blood samples ages 0–30, born 1965–2022 and sampled from 1988–2023. We used each 
bootstrap sample to construct a new epigenetic clock. We then used the clock to predict 
epigenetic age and age acceleration in the remaining individuals not used for clock construction. 
Each line is the posterior predictive mean from a Bayesian linear model, age acceleration ~ birth 
year, fit using the results from each bootstrap sample (mean slope across bootstrap samples = 
0.03, 95% credible interval = -0.01, 0.06).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2025. ; https://doi.org/10.1101/2024.01.05.574416doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

11 
 

 

Fig. S6. An epigenetic clock constructed with only sexually mature polar bears predicts age 
less accurately, indicating early-life experiences are important for understanding epigenetic 
aging rates later in life. (A) Epigenetic age predictions for n = 137 blood (red points) and skin 
(grey points) samples from sexually mature bears aged 5 years and older, predicted using a clock 
built with n = 120 samples from sexually mature individuals. The clock predicts age with a 
median absolute error of 2.5 years and Pearson’s correlation of 0.85, which is notably less 
accurate than the clock that includes young bears (Fig. 2). (B) Epigenetic aging rates accelerate 
over time for 88 bears aged 5 years and older. The line and ribbon represent the mean and 95% 
credible interval around the posterior distribution estimated using a Bayesian linear model (ß = 
0.21, 95% credible interval 0, 0.42).  
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Fig. S7. Posterior predictive checks for Bayesian regression models described in the main 
text indicate good model fits. Overlap between the observed distribution of the response 
variable (bold-line distributions) and simulations from the posterior predictive distribution 
(spaghetti lines) indicates the model fits the data well. Accel born mod = model testing the 
relationship between epigenetic age acceleration and birth year, accel fr mod = model testing the 
relationship between epigenetic age acceleration and age at first reproduction, lrs fr mod = model 
testing the relationship between lifetime reproductive success and age at first reproduction. 
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Fig. S8. Sample quality is consistent over the range of sample years. Points indicate the 
detection p-values from samples retained for constructing the epigenetic clock and downstream 
analysis. Higher detection p-values indicate the CpG sites for the sample showed less 
discrimination from the background reflectance, indicating DNA methylation signals from the 
sample are likely unreliable. Plotting the detection p-values over the year of the sample 
demonstrates quality did not decline with sample age. 
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Table S1. Epigenetic age acceleration over time is consistent between both tissue types and sexes. Coefficients (ß) and 95% 
credible intervals (CrI) from Bayesian regression models testing relationships between epigenetic age acceleration and year of birth. 
The two models include terms for tissue type and sex of the sample. The probability of direction (P direction) describes the probability 
that a coefficient is either positive or negative, expressed as a percentage between 50% and 100%. The Bayesian R2 describes the 
proportion of variance explained by the model. For both models, we used consevative weakly informative priors with mean = 0 and 
standard deviation = 1. We fit both models using the brms package v2.20.4 in R v4.3.1, with 4 chains and 10,000 iterations including 
5,000 warmup iterations. 

Variable Covariates (reference cat.) ß (95% CrI) Bayesian R2 P direction 

Age acceleration 
(n = 162) 

Year of birth 0.34 (0.08, 0.61) 0.06 99.4% 
Tissue (skin) -0.03 (-0.39, 0.32)  57.4% 
Year of birth: tissue (skin) -0.23 (-0.55, 0.10)  91.4% 

Age acceleration 
(n = 76) 

Year of birth 0.20 (0, 0.41) 0.07 97.5% 
Sex (male) 0.19 (-0.12, 0.49) 88.2% 
Year of birth: sex (male) -0.02 (-0.34, 0.29)  56.1% 
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Table S2. There is no genetic variation underlying fitness in the western Hudson Bay polar bear population. Phenotypic mean 
and estimated random-effect sizes of lifetime reproductive success for western Hudson Bay polar bears using a univariate animal 
model with a 4,634-individual pedigree. Individuals in the pedigree were documented between 1966 and 2016 in northeastern Hudson 
Bay near Churchill, Manitoba, Canada. Nind indicates the number of individuals with an estimate of observed lifetime reproductive 
success, a measure of relative fitness. VP is the total phenotypic variance and is the sum of the variance components. Variance 
components include VA = additive genetic ‘animal’, VM = maternal ‘dam’ (i.e., the identity of individual’s dam), VYBirth = cohort ‘year 
of birth’, and VR = residual ‘units’. SD = standard deviation; CI = confidence interval. 
Trait  NInd Nfemales Nmales Mean 

LRS 
(SD) 

VP  

(95% CI) 
VA 

(95% CI) 
VM 

(95% CI) 
VYBirth 

(95% CI) 
VR 

(95% CI) 

Lifetime  
reproductive  
success  

456 307 149 4.07 
(2.57) 

0.16 
(0.06, 0.29) 

 

0.008 
(0, 0.03) 

0.01 
(0, 0.04) 

0.04 
(0, 0.07) 

0.11 
(0.06, 0.15) 
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