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Abstract
1. Sample size sufficiency is a critical consideration for estimating resource selec-

tion functions (RSFs) from GPS- based animal telemetry. Cited thresholds for suffi-
ciency include a number of captured animals M ≥ 30 and as many relocations per 
animal N as possible. These thresholds render many RSF- based studies misleading 
if large sample sizes were truly insufficient, or unpublishable if small sample sizes 
were sufficient but failed to meet reviewer expectations.

2. We provide the first comprehensive solution for RSF sample size by deriving 
closed- form mathematical expressions for the number of animals M and the num-
ber of relocations per animal N required for model outputs to a given degree 
of precision. The sample sizes needed depend on just 3 biologically meaningful 
quantities: habitat selection strength, variation in individual selection and a novel 
measure of landscape complexity, which we define rigorously. The mathematical 
expressions are calculable for any environmental dataset at any spatial scale and 
are applicable to any study involving resource selection (including sessile organ-
isms). We validate our analytical solutions using globally relevant empirical data 
including 5,678,623 GPS locations from 511 animals from 10 species (omnivores, 
carnivores and herbivores living in boreal, temperate and tropical forests, mon-
tane woodlands, swamps and Arctic tundra).
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1  | INTRODUC TION

Resource selection analysis (RSA) is a broad framework linking 
the distribution of animals to their preferences for specific habitat 
conditions and is a fundamental tool in animal ecology (Boyce & 
McDonald, 1999; Strickland & McDonald, 2006). Obtaining sufficient 
locations to ascertain the distribution of animals across landscapes 
is a fundamental requirement for RSA. Given that individual animals 
will differ in the magnitude and direction of preference for different 
components of a landscape (McLoughlin et al., 2010), it is necessary 
to obtain repeated localizations on multiple individuals, now com-
monly collected using animal- attached GPS sensors (Hebblewhite & 
Haydon, 2010). GPS data on animal movements are hence commonly 
employed for RSA and are often analysed using resource selection 
functions (RSFs; Boyce & McDonald, 1999; Elith & Leathwick, 2009; 
Hebblewhite & Haydon, 2010; Manly et al., 2002). RSFs are a class 
of exponential models of space use that estimate the probability dis-
tribution of animal locations using different resources/conditions in 
the landscape, taking into account the availability of each resource, 
and thereby provide a measure of the ‘strength’ of (behavioural) se-
lection for or against each resource (Manly et al., 2002). RSFs are 
easily fitted using standard statistical models (commonly logistic or 
conditional logistic regression) applied to data on animal locations 
and resource distributions in the landscape and have become a cor-
nerstone of research in spatial ecology (Manly et al., 2002; Elith and 
Leathwick 2009; Renner & Warton, 2013; Fieberg et al., 2021).

Given the prevalence of RSFs, it is surprising that the central 
question determining the validity of inferences obtained— how 
much data are needed to estimate a RSF for a given species?— 
has not been solved. This issue has been broached for occupancy 
analysis (Guillera- Arroita & Lahoz- Monfort, 2012) and generalized 

linear mixed models (Johnson et al., 2015), and has been evaluated 
within individual RSF studies using simulations (Leban et al., 2001; 
Loe et al., 2012), yet no analytic expressions exist to determine the 
number of animals (M) and relocations per animal (N) required to ob-
tain RSF outputs to a given degree of precision. While the accuracy 
and precision of RSFs generally increase with sample size, leading to 
a standard rule- of- thumb of M ≥ 30 needed for reliable ecological 
inference (Leban et al., 2001), this rough guideline is grounded in 
century- old thinking about statistics in the pre- computation world 
(James et al., 2013). Crucially, it is also oblivious to the ecological 
reality that a multitude of factors may affect selection strength and 
determine the required sample size (Manly et al., 2002; McLoughlin 
et al., 2010; Hebblewhite & Haydon, 2010). These include density 
dependence (i.e. certain habitats become less attractive when oc-
cupied by conspecifics; Fretwell & Lucas, 1969; McLoughlin et al., 
2010; van Beest et al., 2016), trade- offs in selection for forage and 
cover under predation risk (Fortin et al., 2005; McLoughlin et al., 
2010), temporal variations in resource dynamics (McLoughlin et al., 
2010; Paolini et al., 2018) or the degree of habitat availability or het-
erogeneity in a landscape (Mysterud & Ims, 1998; McLoughlin et al., 
2010; Paolini et al., 2018; van Beest et al., 2016). There is no consis-
tency in RSF studies in the number of replicates used (Hebblewhite 
& Haydon, 2010), as the only alternative approaches to establish the 
number of replicates a priori are ecologically informed guesswork, or 
simply to collect as much data as possible.

The crux of the problem lies in the relationship between sample 
size and ecological complexity. It is suggested that more complex 
systems require more data to describe (Wisz et al., 2008), yet a ro-
bust power analysis (Johnson et al., 2015) allowing examination of 
the relationship between RSF estimation, system complexity and 
data availability is crucially missing. This has obvious economic and 

3. Our analytic expressions show that the required M and N must decline with in-
creasing selection strength and increasing landscape complexity, and this decline 
is insensitive to the definition of availability used in the analysis. Our results dem-
onstrate that the most biologically relevant effects on the utilization distribution 
(i.e. those landscape conditions with the greatest absolute magnitude of resource 
selection) can often be estimated with much fewer than M = 30 animals.

4. We identify several critical steps in implementing these equations, including (a) a 
priori selection of expected model coefficients and (b) regular sampling of back-
ground (pseudoabsence) data within a given definition of availability. We discuss 
possible methods to identify a priori expectations for habitat selection coeffi-
cients, effects of scale on RSF estimation and caveats for rare species applications. 
We argue that these equations should be a mandatory component for all future 
RSF studies.
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ethical implications if more animals are tagged and monitored than 
needed and affects research aimed at the conservation of species, 
which requires reliable estimates of animal– habitat relationships but 
where it is often impossible to monitor large numbers of animals. 
Here, we provide a solution to the sample size problem in RSFs by 
deriving analytic expressions for the values of M and N (the num-
ber of animals and relocations per animal respectively) required 
to estimate RSFs to a required degree of accuracy, taking into ac-
count landscape complexity and the strength of selection for the re-
sources. We validate these expressions using simulations and a large 
dataset of GPS- tagged animals (including 10 species from different 
continents and biomes) and show that the most biologically relevant 
effects of landscapes on animal distributions can often be estimated 
with far fewer animals and locations than commonly stated.

2  | MATERIAL S AND METHODS

We begin by describing mathematically how to determine the num-
ber of locations per animal (N) and the number of animals (M) for 
RSFs. Generally speaking, RSA seeks to parameterize a model of 
space use that has the following form (Boyce & McDonald, 1999):

where u(x) is the utilization distribution of the study species (i.e. the 
probability density function of the study animals’ locations), A(x) is a 
function denoting the availability of the point x to the animals, Ω is the 
study area and W(x) is the RSF. (Note: throughout this manuscript, bold 
fonts imply that the quantity is a vector.) For the purposes of our ana-
lytic calculations, our RSF will be dependent on a single resource layer 
R(x). This could denote, for example, the vegetation quality or prey 
availability at point x. However, in general, R(x) represents a map of any 
environmental feature which is hypothesized to covary with space use. 
Although we only look at one resource layer at a time for our analytic 
calculations, we show in our empirical study (below) that the resulting 
formulae work when the RSF has multiple layers.

As is the standard method for RSA, we make three simplifying 
assumptions (Manly et al., 2002): (a) our weighting function is of the 
form W(x |�) = exp[�R(x)], where � is a parameter to be estimated; 
(b) the availability kernel A(x) is a uniform distribution; and (c) reloca-
tions are independent. Consequently, our model of space use from 
Equation (1) becomes:

The aim of this section is to understand how many independent sam-
ples are required to give an accurate parameterization of the model in 
Equation 2. Note that when applying our theory to empirical data, one 
will need to test that the assumption of independence between sam-
ples is reasonable. This is a standard assumption in resource selection 

studies and the techniques for testing independence are no different 
for our theory than for resource selection in general. Much has already 
been written in the literature about this independence assumption (e.g. 
Gillies et al., 2006; Manly et al., 2002; Millspaugh et al., 1998) and we 
refer the reader there for guidance in this regard.

2.1 | Locations from a single individual (N)

We first need to phrase the question ‘How many locations?’ in a con-
crete, mathematical way. Suppose we wish to test the null hypoth-
esis H0: � = 0 against the alternative H1: � ≠ 0 at a significance 
level p ∈ (0, 1). An experiment to test this hypothesis involves meas-
uring N samples and using (conditional) logistic regression to infer � 
and test the null hypothesis (as is the standard method for resource 
selection, e.g. Manly et al., 2002). We define N�,p(�) to be the mini-
mum number of samples required so that we expect to reject the null 
hypothesis in 100(1 − �)% of experiments. An approximate analyti-
cal formula for N�,p(�) is given as follows (derived in Appendix A):

Here, z� = Φ− 1(1 − �) where Φ( ⋅ ) is the cumulative distribution 
function for the standard normal distribution (e.g. z0.05 ≈ 1.645, 
z0.025 ≈ 1.96), X� is a random variable whose probability density func-
tion is given by Equation 2, and Var[R(X� )] is the variance of R(X� ). An 
explicit functional expression for Var[R(X� )] can be written as follows:

We call Var[R(X� )] ‘landscape complexity’. Critically, this form of land-
scape complexity is determined in part by multiplying the landscape 
layer by the expected �, so it should be understood as representing the 
landscape complexity as viewed by the animal.

The formula in Equation 3 is approximate due to two assump-
tions: (a) it relies on the standard error, �, of the maximum likelihood 
function being approximately normally distributed and (b) it uses a 
standard result relating the standard error for the estimator of � to 
the second derivative of the log- likelihood function (see Appendix A 
for more details). Therefore, it is necessary to investigate the magni-
tude of these approximating assumptions using simulated data.

To test how effective the approximate expression from Equation 
3 is at capturing the actual number of samples required to infer � 
with a given level of accuracy, we constructed a simulated resource 
layer which describes an example of the function R(x) (Figure 1a). 
This test layer is a Gaussian random field, previously used in the con-
text of resource selection by Potts et al. (2014). It was generated 
by the R function GaussRF() from the RandomFields package 
(Schlather et al., 2016), using the exponential model with mean = 0, 
variance = 1, nugget = 0, and scale = 10, and consists of L = 100 by 
L = 100 pixels. By sampling N times from Equation 2 for various N 

(1)u(x)=
A(x)W(x)

∫
Ω
A(x�)W(x�)dx�

,

(2)u(x|�)= exp[�R(x)]

∫
Ω
exp[�R(x�)]dx�

.

(3)N�,p(�)≈
(z�+zp∕2)

2

Var[R(X� )]
�−2.
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−
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[
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]
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)2
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with R(x), we can compute empirical values for N�,p(�) for different � 
(full method given in Appendix B). Comparison of these empirically 
derived values alongside the analytical expression from Equation 3 
reveals remarkably strong agreement (Figure 1b). This suggests that 
Equation 3 gives an accurate estimation of the number of indepen-
dent samples required to estimate �.

2.2 | Locations from multiple individuals (M)

Now we assume that there are M individuals and they each select 
resources with different �. To model this, let �1, …, �M ∼ N(� , s2) 
be independent draws from a normal distribution with mean � and 
variance s2. (Note that this assumes that the individuals’ responses 
to resources are normally distributed, which needs to be checked 
when applying out results to any specific study system). Then � i is 
the coefficient of resource selection for individual i ∈ {1, …, M}. 
Suppose for each individual i we have gathered Ni locations. Let �̂ i be 
the maximum likelihood estimator for � i. Then the standard devia-
tion of �̂ i can be estimated as (Appendix A, Equation 15):

If �̂ is the mean of �̂1, …, �̂M, then �̂ is normally distributed as follows 
(Appendix C):

Thus �̂ is an unbiased estimator of �. Notice that the variance decays 
as M increases. If the practitioner has some prior expectation of the 
possible values of � and s2, Equation 6 can be used to calculate the 
number of animals, M, required to obtain an empirical estimate of � to 
a given degree of accuracy.

As well as calculating an estimate of �, it is also possible to es-
timate s2. The following is an unbiased estimator of s2 for M ≥ 2 
(Appendix C):

We could not derive a closed analytic formula for the uncertainty in the 
estimator given in Equation 7; however, we provide code for estimating 
this using random sampling (see Appendix D). In general, the estima-
tor becomes more precise for lower �i and higher M. This is shown in 
Appendix D, where we also verify numerically Equations 6 and 7.

Equation 6 allows us to calculate the minimum number of ani-
mals, M�,p(�), for which we would expect to reject the null hypothesis 
that � = 0, at significance level p, 100(1 − �)% of the time (two- 
tailed test). M�,p(�) is the minimum integer, M, that satisfies the fol-
lowing inequality:

Note that M�,p(�) is a non- decreasing function of s2, meaning that more 
variation amongst individuals is likely to mean one has to sample a 
higher number of animals.

(5)�i =
1

√
NiVar[R(X� i

)]

.

(6)�̂∼N

(
� ,

1

M2

∑M

i=1
�2
i
+
s2

M

)
.

(7)ŝ2=
1

M−1

∑M

i=1

(
�̂ i−

1

M

∑M

j=1
�̂ j

)2

−
1

M

∑M

i=1
�2
i
.

(8)M≥

s2(zp∕2+z�)
2+

�
s4(zp∕2+z�)

4+4�2(zp∕2+z� )
2
∑M

i=1
�2
i

2�2
.

F I G U R E  1   Performance of analytic expression on simulated data. Panel (a) shows a simulated resource layer, R(x), which was used to 
construct the utilization distribution (Equation 2) from which the simulated animal locations were samples. The circles (resp. triangles) in 
Panel (b) show the empirically derived values of N0.5,0.05(�) (resp. N0.05,0.05(�)), the minimum number of samples required so that there is a 50% 
chance (resp. 95% chance) of rejecting the null hypothesis that � = 0 at a significance level of p = 0.05. The solid line (resp. dashed line) in 
Panel (b) shows the corresponding analytic approximations given by Equation 3 and the remarkable agreement with the empirically derived 
values

(a) (b)
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2.3 | Data and resource selection functions

Equations 3 and 8 give predicted values for the number of reloca-
tions N and the number of animals M required for RSF estimation. To 
test our analytical predictions, we compiled GPS- based relocation 
datasets from 10 separate species with accompanying landscape 
data in raster format (Table S1; Figure 2). Landscape data were either 
categorical (i.e. discrete landscover) or numeric (e.g. elevation, pre-
cipitation, etc.). To ensure comparability between model outputs for 
each species, we centred and scaled each numeric landscape raster 
in R using the scale() function with default parameters. We con-
verted categorical landcover rasters to binary raster layers for each 
landcover classification of interest (e.g. deciduous forest, croplands, 
etc.) to acquire estimates of Var[R(X� )] for a given categorical raster.

We generated a 1:1 sample of availability (i.e. 1 available location 
per animal relocation) within each animal’s 99% home range as esti-
mated using the function kernelUD() in R package adehabitatHR 
with the default bandwidth estimator. For each availability set, we 
extracted centred- and- scaled (numeric) and binary (categorical) 
landscape data to animal relocations and available locations and fit a 
RSF to each animal in each dataset using logistic regression (i.e. 511 
individual models; Table S2). For simplicity, we used only linear main 
effects for each predictor in a given RSF; however, we emphasize 

that more complex effects (e.g. nonlinear and interaction terms) may 
be identically investigated using the appropriate nonlinear trans-
formation or multiplicative product on the resource layer(s) prior to 
calculation. Note that, although our equations operate on a single 
resource layer at a time, our analysis uses RSFs with multiple layers. 
This procedure thus tests whether multiple layers may be analysed 
one- at- a- time to ascertain the number of animals and fixes required 
to estimate the �- value for each layer.

2.4 | Empirical validation: M

After fitting each RSF, we calculated the mean selection coeffi-
cient � for each landscape layer across individuals within a species. 
Assuming � was an accurate estimate of population- level selec-
tion �, we asked: how many animals M were necessary to estimate 
�? We calculated Var[R(X� )] for each centred- and- scaled or binary 
raster within each animal’s 99% range according to Equation 4 and 
the resulting values of N according to Equation 3. We generated 
empirical distributions of �̂ and ŝ2 as described in Appendix D for 
M ∈ {2, …, 30} using the average N and Var[R(X� )] as population- 
level estimates of each. We computed the empirical 95% intervals 
at a given M (i.e. � = 0.05). The value of M at which the empirical 
interval no longer contains 0 is the predicted minimum M necessary 
to estimate � with 95% confidence, Mpred (i.e. the minimum integer 
M0.05,0.05(�); Equation 8).

For comparison with observation, we then resampled the esti-
mated selection coefficients for each individual within a species. For 
a given M ∈ {2, ⋯, 30} as above, we generated 4,000 samples of Mi 
observed selection coefficients and calculated � for each (i.e. 4,000 
mean selection coefficients assuming Mi animals). This represents 
the observed distribution of possible � for Mi sampled animals, as-
suming the total pool of animals is a representative sample. Finally, 
for each M, we calculated the grand mean �G and the empirical 95% 
interval of �. The value of M at which the empirical interval no longer 
contains 0 is the observed minimum M necessary to estimate � with 
95% confidence, Mobs, and should correspond to Mpred

2.5 | Empirical validation: N

The M validation procedure described above assumes that, on aver-
age, sufficient relocations N were available to estimate M. Now we 
consider: for a given individual- level selection coefficient �, do we 
have sufficient N to reject the null hypothesis for a given animal? 
We randomly sampled one animal from each dataset and calculated 
Var[R(X� )] within the animal’s 99% range using the animal’s specific 
RSF model coefficients as �. From this, we calculated the predicted 
number of relocations Npred necessary to estimate � given Var[R(X� )] 
(i.e. N0.05,0.05(�); Equation 3).

For comparison, we resampled Nsam relocations with replace-
ment from the animal’s dataset, where Nsam = ∗

iNtotal

50
, i ∈ {1, …, 25} 

and Ntotal is the total number of relocations recorded for that animal. 

F I G U R E  2   Data distribution. Geographical locations of GPS 
datasets (5,678,623 GPS relocations) across 511 individually 
collared members of 10 species
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This unconventional sequence was selected because (a) it produced 
a comparable number of observed values of N to that in the M valida-
tion procedure (25 observed N vs. 29 pairings of Mpred and Mobs) while 
(b) keeping the increments small enough to retain detail given that 
estimates of N can be orders of magnitude larger than those of M. 
We generated 4,000 samples of Nsam,i relocations and fit an RSF to 
each individual sample (i.e. 4,000 RSFs assuming Nsam,i relocations). 
We retained all originally generated available locations in each RSF 
so as to maintain a constant availability kernel between RSFs with 
different relocations. We then calculated the mean selection coef-
ficient � and its 95% empirical interval at a given Nsam. The value 
of Nsam at which the empirical interval no longer contains 0 is the 
observed minimum N necessary to reject H0: � = 0 at significance 
level p ≤ 0.05, Nobs, and should correspond to Npred.

3  | RESULTS

Equations 3 and 8 at the basis of our methods provide analytically 
predicted values for the number of relocations N and the number 
of animals M required to parameterize an RSF. Simple 1- to- 1 plots 
of Npred versus Nobs and Mpred versus Mobs across all 10 species re-
vealed strong agreement between observation and prediction 
(Figure 3). Interestingly, 1 outlier was identified for N and 1 for M. 
Visual inspection of the data revealed that these outliers occurred 
alongside availability samples within individual RSFs that did not 
properly describe the true spatial integral of resource availability 
(i.e. ∫

Ω
A(x�)W(x�)dx�; Equation 1). That is, the 1:1 used/available sam-

pling protocol undersampled the available space. Thus, Npred and 
Mpred can be sensitive to insufficient spatial sampling of availability, 
and care should be taken to avoid such undersampling before ap-
plying these methods.

Given this, we then asked, what is the role of the definition of 
availability (sensu Johnson, 1980) in shaping these relationships? We 
estimated RSFs as described above using two additional availability 
definitions that varied the spatial extent of availability for a given 
animal: (a) within the entire collection of 99% kernel density esti-
mates (KDEs; i.e. animals have access to resources within all KDEs 
equally) and (b) within the entire site (i.e. animals have access to 
all resources within the study site, including those outside of 99% 
KDEs). This mimics the problem of sufficiently sampling availability 
described above, but now availability is driven by conceptual or eco-
logical definitions rather than by the sampling protocol itself. Similar 
consistency in �̂ was observed across M within a given definition of 
availability, but the sign and magnitude of �̂ varied with availabil-
ity from individual-  to site- level (Figure 4). Despite the change in 
sign and magnitude, Equation 8 is able to calculate Mpred consistent 
with observation across availability definitions. By inclusion, given 
that Npred is a component of Mpred (see Equation 5), we also observe 
that Equation 3 is consistent with observation across availability 
definitions.

Lastly, we asked what are the primary drivers of Npred and Mpred 
as estimated by Equations 3 and 8? A key outcome of our method is 
that this question can be answered analytically, by simply inspecting 
Equations 3 and 8. Equation 3 shows that Npred is inversely correlated 
with both Var[R(X� )] and �2, indicating that as either landscape vari-
ation or selection strength increase, so must Npred. Similarly, be-
cause �2 is contained in the denominator of Equation 8, Mpred must 
decrease with increasing selection strength. To demonstrate this 
graphically, we plotted log– log regressions of Npred and Mpred against 
Var[R(X� )] and �, respectively, using data from all 10 species to eval-
uate whether these analytical predictions bear out under real data 
scenarios (Figure 5). Per the analytical predictions, both Npred and 
Mpred declined as their respective predictors (landscape variation or 

F I G U R E  3   One- to- one comparison of predicted and observed M and N. Two outliers are observed for N and one for M due to mismatch 
between sampled and true availability within the animals’ 99% ranges. Dashed lines are those with gradient 1 crossing through the origin
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habitat selection strength) increased. It is also worth noting that in-
clusion of both predictors within the same log– log regression (i.e. 
Mpred as a function of both Var[R(X� )] and �) returned R2 = 1, as ex-
pected given that Npred and Mpred are determined only by Var[R(X� )] 
and �.

4  | DISCUSSION

It is common in studies using RSFs to assume that a sample size 
of M ≥ 30 animals tagged is necessary for consistent and reli-
able inference (Leban et al., 2001; Hebblewhite & Haydon, 2010). 
Furthermore, it has been suggested that more complex landscapes 

(i.e. those with higher landscape variance Var[R(X� )]) require more 
relocations per animal N to characterize selection (Wisz et al., 2008). 
Our analytical models and validation procedures return a rather dif-
ferent set of results. First, we found that Mpred was often (but not 
always) substantially < 30, and this prediction strongly agreed with 
observation based on resampling of GPS- based telemetry across 
a variety of ecologically contrasting species (Figure 3; Figures S1– 
S20). Strikingly, our analytical results show conclusively that M can 
only decline with increasing absolute magnitude of � (Equation 8). 
Although M indeed increases with increasing variation in individual 
selection (Equation 8), this indicates that the most biologically rel-
evant effects (i.e. those with the greatest �) can often be estimated 
with only a few animals (Figure 5).

F I G U R E  4   Comparison of predicted M across orders of availability. Mpred (vertical dotted line) changes depending on whether availability 
for the RSF is defined at the scale of the individual (each animal has its own available locations within its own 99% KDE), population (all 
animals have equal access to resources within all animal’s 99% KDEs) or site (all animals have equal access to resources across the entire site). 
If no vertical dotted line occurs, then Mpred > 30
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This reveals important ethical and budgetary implications for 
wildlife studies. For example, consider the mule deer dataset con-
taining 106 tagged individuals (Table S1). Our findings show that 
the strongest effects on the utilization distribution (i.e. selection for 
temperature, evergreen forest and shrublands) may be estimated 
with fewer than 20 animals (Figure S20), that is 80% fewer animals 
than were used. This means that, using a conservative estimate of 
US$2,450 for each GPS collar and data fees (K. L. Monteith, pers. 
obs.), for the aspects of the study focussed on identifying the rele-
vant resource drivers of animal distributions as in typical RSF stud-
ies, this project could have spent $210,700 less than it did (excluding 
researcher/technician effort, which has significant costs in itself). Of 
course, it may still be necessary to tag more animals for aspects of 
the study beyond resource selection analysis, but this financial dis-
crepancy is still worth bearing in mind as it is not a trivial amount. 
Compared to the popular approach of tagging as many animals as 
possible and constructing phenomenological models to identify eco-
logical mechanisms post hoc (colloquially referred to as ‘collar- and- 
foller’; Dunn, 2004; Fieberg & Johnson, 2015), our analytical results 
suggest researchers start with efforts aimed at constructing a priori 
hypotheses and associated models, then use our Equations 3 and 8 
to estimate the number of animals and locations per animal required 
for the study aims (Johnson et al., 2015).

Second, Npred (the number of independent relocations per indi-
vidual) also strongly agreed with observation, with both predicted 
and observed N in the 1,000s or larger (Figure 3). This agrees with 
findings that within- replicate sample sizes should generally be large 
(e.g. Wisz et al., 2008); however, our analytical expressions also con-
clusively demonstrate that N is directly calculable (Equation 3) and 
as with M is expected to generally decline with increasing Var[R(X� )] 
and �. These conclusions for both M and N are not only analytically 
proven but are additionally supported by real data bearing out the 
analytical predictions (Figures 3– 5). As such, our findings demon-
strate that not only are M and N imminently calculable given a known 
landscape and some expectation of �, but the expected trends in M 
and N with respect to landscape complexity and the strength of ani-
mal preference are opposite to those predicted by previous studies.

Why are our results contrary to so much of the preceding litera-
ture? One possibility could lie in the ‘golden rule’ of sample size, i.e. 
thatM ≥ 30 is required for a sample size sufficient to invoke the cen-
tral limit theorem and assume a roughly normal distribution of pos-
sible sample means (Aho, 2014, p. 154), or to ignore non- normality 
because a model structure is somehow ‘robust’ to non- normality 
(e.g. Hector, 2015, p. 48). This is reinforced by an absence of mathe-
matical attention to the sample size question. Previous studies have 
used simulation or empirical analyses to explore sample size suffi-
ciency within particular species or systems (e.g. Leban et al., 2001; 
Loe et al., 2012; Sequeira et al., 2019), leading to conclusions that 
are quite specific to a given study but then are widely adopted as 
inferring pattern across all systems. By defining the problem mathe-
matically (i.e. at what values of M and N do we reject the null hypoth-
esis 100(1 − �)% of the time at significance p?), we instead arrive at 
general analytical solutions that then may be tested with simulations 

and empirical analyses that are specifically designed for those solu-
tions, rather than relying on intuitive but incorrect assumptions 
about the relationships between landscape variation relative to se-
lection strength and RSF sample size sufficiency.

Our calculations show that the required M and N for a given study 
are dependent entirely on � and Var[R(X� )]. The latter can be directly 
calculated given a landscape and an expectation for �, but selecting 
an appropriate expected � is a critical step in estimating M and N. 
For a priori planning, this could be accomplished using expert knowl-
edge and previous literature; however, there may be no conceivable 
prior expectation of � in some RSF exercises. In such a case, one may 
elect to perform, for example, a sensitivity analysis given a range of 
� to select conservative estimates of M and N. Furthermore, observe 
that � is often affected by a variety of ecological phenomena, includ-
ing resource availability, competitor density and seasonal effects 
(McLoughlin et al., 2010; Mysterud & Ims, 1998; Paolini et al., 2018; 
van Beest et al., 2016). This implies that Equations 3 and 8 estimat-
ing N and M, respectively, are in fact hierarchical with dependencies 
not only on landscape variance (i.e. Var[R(X� )]) but also on landscape 
composition and structure as they determine �. In scenarios where 
we are uncertain about possible values of �, we may construct in-
formed models suggesting likely values of � given an expectation 
for how the animal should behave as resource availability changes 
(e.g. generalized functional response models; Matthiopoulos et al., 
2011). Such a hierarchical approach ‘borrows’ information from the 
functional response model to provide a more ecologically informed 
range of possible � for a sensitivity analysis (Hobbs & Hooten, 2015).

Our results also provide new insight into the importance of suffi-
cient spatial sampling of availability. There was 1 outlier in the 1- to- 1 
comparison of Npred and Nobs, and 1 in that of Mpred and Mobs (Figure 3). 
These occurred because the 99% range of the animals under obser-
vation was so large, and the underlying landscape rasters so finely 
grained, that our 1:1 use/availability sample did not accurately por-
tray the spatial integral of availability ∫

Ω
A(x�)W(x�)dx� (Equation 1). 

This caused Mpred and Npred to be based on a different, incomplete 
availability set compared to the fitted RSFs. This highlights a now 
well- established conclusion: the sampling intensity for availability in 
RSF- styled models should be as large as necessary to correctly char-
acterize the availability integral. Previous RSF- styled studies (includ-
ing SSF) have almost exclusively sampled availability as we did here 
using ratios (i.e. 1:1, 1:10, 1:100, etc.; e.g. Boyce & McDonald, 1999; 
Fortin et al., 2005; Street et al., 2016). This encourages potentially 
sampling at an intensity insufficient to approximate the spatial inte-
gral (as occurred here for outlying points in Figure 3; Benson, 2013). 
Our findings reinforce that availability sampling should be con-
ducted in a regular (non- random) fashion at a spatial interval equal to 
the resolution of the underlying landscape data such that every pos-
sible location within the availability boundary is considered (Benson, 
2013; Fieberg et al., 2021). This would produce an availability ob-
servation for every raster pixel and thus overlap between used and 
available locations. Although it is suggested that such overlap is to 
be avoided (e.g. Wisz et al., 2008), logically a used location must also 
be available otherwise it cannot be selected, and removing used 
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locations from availability can potentially omit important effects 
from the availability sample. Our equations indicate that this overlap 
is required by the mathematics of resource selection.

This finding reinforces that defining resource availability at the 
scale of the estimated model is a critical first step in planning a RSF. 
Our multiscale analysis of mule deer produced remarkably different 
estimates for M at each of the three definitions of availability (site- 
wide, population- wide and individual availability; Figure 4), indicat-
ing that failure to properly define the available space can lead to 
incorrect estimates of both M and N. This is not a new finding; the 
importance of properly defining what is available for an animal to se-
lect is a long- standing issue in RSA research (e.g. Boyce & McDonald, 
1999; Fortin et al., 2005; Johnson, 1980). However, the difficulty 
of calculating M and N for planning a RSA study increases with the 
biological scale of the intended model. Site- wide availability assumes 
all animals have access to resources on the entire landscape and is 
similar in concept to first- order selection (i.e. where the species is 
located; Johnson, 1980), but availability may be sampled as a reg-
ular grid across the entire site. Population- wide availability refines 
the scale towards second- order selection (i.e. where animals situate 
their home ranges), but accurately defining a perimeter for the likely 
population range a priori within which to sample availability is non- 
trivial. This becomes even more difficult under individual availability; 
how can we anticipate the size and placement of individual home 
ranges? A feasible solution may be to delineate population bound-
aries and within this delineation generate random ranges with area 
determined by the literature and expert knowledge. This would en-
able calculation of an average theoretical availability for any animal 
in the study site with appropriate standard error. This could then be 
used to produce an average prediction for M and N, and associated 
confidence limits, across the average home range composition.

We approached this analysis with the aim of evaluating how 
many GPS- tagged animals M are needed for RSF estimation, but 
there are many RSF applications that do not seek M or require GPS- 
tagging (e.g. plant distributions). For example, RSFs estimated for 
rare species will typically lack sufficient data for individual- based 
estimation of the utilization distribution u(x) such that M is irrelevant 
and only N need be evaluated. RSFs can be sensitive to small sample 
sizes (Wisz et al., 2008), yet they often generate accurate predic-
tions for rare species with small datasets (McCune, 2016), suggest-
ing that for some rare species smaller N is sufficient to achieve a 
robust model. Our findings permit evaluation of this. Consider a 
hypothetical scenario where an RSF is estimated for a rare species 
with 100 observations and � is recorded. Here, Equations 3– 4 could 
be used to calculate Npred as a post hoc metric of confidence assum-
ing � is the true population/species- level average selection coeffi-
cient. If Npred ≤ 100, then one could trust the outcome of the RSF; 
conversely, Npred > 100 would indicate additional data collection 
is necessary. Where that is not possible, one could systematically 
adjust z� and zp∕2 (Equation 3) to determine the confidence interval 
that rejects the null hypothesis H0: � = 0 and establish a degree of 
confidence for model outcomes. Although we performed validation 
using GPS- based datasets, Equation 3 is agnostic to how data are 

collected and may also be applied to sessile organisms. Provided we 
can plausibly accept that � is roughly true and individual variation 
is either minimal or accommodated by the population- level � (pre-
sumably what has been estimated), our equations may be easily ex-
tended to evaluate almost any RSF- based study.

We must emphasize that although M may only decline with in-
creasing �, Equation 3 allows for a turning point to occur such that N 
initially decreases with � but eventually increases at very large � (see 
Supplemental Information, Equation 25). When selection strength 
is particularly strong, smaller sample sizes make it much more likely 
to obtain perfect separation between used and unused resources. 
In such a case, one must collect more data to observe the animal 
not using a resource unit it should strongly prefer (or in the case of 
negative selection, to observe it using a resource it should strongly 
avoid). Practically, this means that sampling intensity for RSA is a 
greater concern for specialist organisms than generalists because 
specialists should exhibit typically larger � for preferred/avoided 
resource units than generalists. Although the equations identified 
here allow us to directly calculate N for any landscape and expected 
selection strength, we should generally expect that specialists will 
require larger N for precise RSF estimation.

The equations identified here explicitly evaluate the compatibil-
ity of a dataset with a given hypothetical model (i.e. �). Calculating 
their solutions across gradients of N and M reveals how the num-
ber of data points (relocations) and number of replicates (animals) 
affect determination of compatibility. Rather than the values of N 
and M required to achieve statistical significance, we instead suggest 
these be used to determine the relevant sample sizes necessary to 
achieve ‘consistent’ results, that is if we increase sampling intensity 
would we see substantial change in estimated coefficients? From 
this perspective, we conclude that the number of animals M required 
to consistently estimate the most biologically relevant effects in an 
RSF can be well below commonly touted sample size thresholds (i.e. 
M ≥ 30), particularly when selection strength is strong (Figures 3 
and 5). Moreover, the number of required relocations N can also be 
quite small but tends towards larger sample sizes when landscape 
variation is small. The sufficiency of samples sizes M and N is depen-
dent entirely on the strength of selection (�) and landscape variation 
with respect to selection strength (Var[R(X� )]). Rather than simply 
reporting sample sizes in RSF studies, researchers should pay ex-
plicit attention to the effect their sample size has on their findings. 
Regardless of study organism, ecosystem or scenario, our equations 
may be equally applied to any RSF- based study to evaluate the 
consistency of expected outcomes given a dataset of a particular 
size. This will partially address the so- called ‘replicability crisis’ by 
explicitly characterizing the consistency of model outputs in rela-
tion to sample sizes and effect sizes, thereby increasing reader (and 
reviewer) confidence in such studies. Similarly, editors and review-
ers should abandon preconceived notions of what makes a sufficient 
sample size in RSF in favour of evaluating the sensitivity of findings 
to sample size based on the mathematical rules identified here, for 
it is also feasible (and indeed demonstrable) that consistent findings 
can be achieved with as few as N = 100 relocations per animal and 
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M = 2 animals (Figure 3). Because M and N can be easily calculated 
provided knowledge of ecological and landscape effects, we argue 
that such calculations should henceforth be a mandatory component 
for all RSF studies.
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