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Abstract
Animal diet and health influence fitness, making individual variation in these markers essential for understanding how 
individuals and populations respond to their environments. Faecal and hair samples provide a record of this information and 
can be non-invasively collected from animals in the field. However, physiology, diet, and susceptibility to parasitic infec-
tions vary within individuals, requiring repeated samples from individuals. We developed a technique using biotelemetry 
data for individual identification of non-invasive faecal material and hair sampled from female elk (Cervus canadensis). 
We non-invasively collected individually genotyped faecal and hair samples from resting sites, then compared the accuracy 
of supervised machine learning models to predict the individual identities of the samples. We found both the tightness of 
global positioning system point clusters and activity level surrounding the sample allowed us to positively identify samples 
belonging to specific individuals with 77% accuracy. Our approach can be applied to other populations for which biotelemetry 
data are available and is potentially adaptable for other species. Furthermore, application of our approach will reduce the 
need for individual identification of non-invasive samples using genetic analysis, which is costly and prone to low recovery 
success. Increased access to physiological, dietary, and health information obtainable from individual non-invasive samples 
will strengthen our understanding of animal responses to their environments.
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Introduction

Diet and health are essential components of fitness that vary 
among individual animals. Thus, quantifying individual var-
iation in diet and physiological markers is an important part 
of understanding how individuals and populations interact 
with and respond to their environments. Animal hair and 
faecal material contain a record of such information from 
a point in space and time, allowing them to be linked to 

the environment experienced by an individual. For exam-
ple, microhistological analysis of faecal material (Hoy et al. 
2019) and stable isotopes of carbon and nitrogen obtained 
from individual hair samples (Bryan et al. 2013) reveal how 
changes in environmental conditions affect differences in 
diet composition between populations. Using parasites shed 
in faecal material, the prevalence of infections in social spe-
cies can also be linked to factors such as density and group 
size (Snaith et al. 2008). Glucocorticoid hormones help to 
restore homeostasis following acute exposure to stressors 
like predator encounters (Romero 2004), and thus faecal 
material with relatively high glucocorticoid concentrations 
is indicative of populations facing elevated predation risk 
(Hammerschlag et al. 2017). Because it is not always pos-
sible to examine stomach contents or blood, non-invasive 
sampling of hair and faecal material has become a common 
approach for obtaining diet (Leighton et al. 2020), para-
site load (Snaith et al. 2008), and stress information from 
wild mammals (Sheriff et al. 2011). However, physiology, 
diet, and susceptibility to parasitic infections varies within 
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populations, a complication that can be resolved by collect-
ing repeated non-invasive samples from individuals.

Individual variation is prevalent in animals (Dingemanse 
et al. 2010; Guindre-Parker 2020), and at the population 
level it can reduce the precision of information obtained 
from non-invasive samples. For example, the existence of 
dietary specialists within a population of mostly generalists 
can decouple measurements of stable isotopes from meas-
urements of local food availability (Ramos et al. 2020). Sim-
ilarly, if a population exhibits a glucocorticoid response to a 
stressor but variation in stress responses is high, individual 
responses might not reflect the level of stressor to which the 
population is exposed (Guindre-Parker et al. 2019). In some 
cases, high individual variation in glucocorticoid responses 
can even mask detection of population level responses to the 
environment (Coppes et al. 2018). Individuals also differ in 
their susceptibility to parasitic infections depending on age 
and life history stage, meaning the demographic structure 
of populations can skew faecal pellet parasite counts (See-
ber et al. 2020). Thus, while untargeted collection of non-
invasive samples provides a general overview of responses to 
the environment, repeated samples from individual animals 
adds context to help interpret how the environment impacts 
populations.

In addition to distinguishing individual variation from 
population-level patterns, sampling individual animals 
strengthens the inferences that can be drawn from non-inva-
sive sampling. For example, pairing individual diet samples 
with changes in body mass over time makes it possible to 
track the interacting effects of the environment and indi-
vidual foraging behaviour on fitness (Giroux et al. 2016). 
Repeated glucocorticoid samples from individuals can reveal 
endocrine plasticity, which may be important for individuals 
to ensure reproductive success in fluctuating environments 
(Guindre-Parker et al. 2019). While samples from individu-
als provide more information than non-invasive samples col-
lected at random from the population, planning their collec-
tion, and their subsequent assignment to individual animals, 
is not straightforward.

The individual identities of non-invasively collected sam-
ples can be confirmed by comparing individual genotypes 
of microsatellite loci recovered from hair and faecal mate-
rial (Bryan et al. 2013; Jesmer et al. 2020). While some 
collection methods identify individuals relatively success-
fully (Bach et al. 2022), genetic information recovered from 
faecal material can be degraded by high temperatures and 
precipitation, often resulting in low recovery success or 
restricting sample collection to winter and temperate cli-
mates (Rea et al. 2016). Physiological measurements can 
also be attributed to known individuals by collecting faecal 
material after observing the individual defecate (Fattorini 
et al. 2018; Dulude-de Broin et al. 2019; Hunninck et al. 
2020). While this individual observation technique mitigates 

the issue of sample degradation in genetic analysis because 
exposure to the elements is reduced, the substantial time 
investment required to observe defecation limits sample size. 
In comparison to faecal samples the genetic material con-
tained in hair is stable over longer periods of time, but this 
stability also makes it difficult to determine when the sam-
ple was left by the individual (Lukacs and Burnham 2005). 
Uncertainty in the age of the sample could prevent the physi-
ological information therein from being linked to short-term 
and transient environmental factors. Thus, an efficient and 
reliable technique for locating a large number of individually 
identifiable samples could disentangle the effects of indi-
vidual differences from the environment.

A potential solution for linking individuals to non-
invasively collected hair and faecal samples capitalizes on 
remote sensing of animal space use. Inference of location 
and movement characteristics from remotely sensed Global 
Positioning System (GPS) data has made it possible to iden-
tify areas used by individual mammals for parturition (Bonar 
et al. 2018) and foraging (McNeill et al. 2020). Tracking 
individual animals to these areas of high use reduces time 
spent in the field because areas can be prioritized for col-
lection of samples that are more likely to belong to specific 
individuals. For example, Giroux et al. (2012) linked fae-
cal material to individual GPS-collared white-tailed deer 
(Odocoileus virginianus) by following their foraging tracks. 
Though genetic analysis or individual observation are the 
only methods that can conclusively confirm the identities of 
individual samples (Coppes et al. 2018), the high resolution 
at which GPS data are now available facilitates the collection 
of a large number of samples that do not rely on successful 
extraction of genetic material. However, the performance 
of these techniques for targeting known individuals must be 
evaluated on a species-by-species basis.

Here, we developed and demonstrated a technique for 
individual identification of non-invasively sampled faecal 
material and hair from female elk (Cervus canadensis) using 
GPS data, motivated by a need to disentangle individual 
differences in physiology, diet, and parasite load from envi-
ronmental effects. Elk are well suited for individual collec-
tion of non-invasive samples because they must stop moving 
while ruminating or bedding (Cook 2002), producing dis-
crete GPS location clusters. Particularly during spring and 
autumn shedding (O’Gara 2002), it is common to find hair at 
their bedding locations. Furthermore, elk defecate at an aver-
age frequency of once every 2 h (Neff et al. 1965), meaning 
an individual is also likely to leave a faecal sample at loca-
tion clusters where it has spent at least 2 h. This increases the 
probability of collecting a sample from a known individual. 
In spring and summer, we collected fresh faecal material 
and hair samples from location clusters indicative of bed-
ding sites suspected to belong to known genetic individuals 
from the population. After confirming the identity of the 
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individual at each bedding site by genetic analysis of the 
samples, we compared the predictive performances of super-
vised machine learning models to distinguish positively and 
negatively identified samples based on characteristics of the 
target individual’s GPS location clusters.

Methods

Study system

We conducted all field work in southeast Manitoba, Can-
ada, within the traditional lands of the Anishinaabe people 
(49.134, – 96.557). The study area is characterized by hot 
summers, with approximately 300 mm of rain and temper-
atures regularly in excess of 30 °C from May to August. 
The approximately 150 adult elk in our study population 
(Manitoba Agriculture and Resource Development, unpub-
lished data) inhabit an area that comprises privately owned 
agricultural land and public land dominated by marshes, 
wet hardwood forests, and shrubland. In February 2019, 18 
individual females were captured using a net gun fired from 
a helicopter and each was fit with an Iridium satellite Global 
Positioning System collar (Vertex Plus 830 g, VECTRONIC 
Aerospace GmbH, Berlin, Germany). The collars were pro-
grammed to collect locations every 30 min from May to 
August 2019 and had a mean fix success rate of 89.4% (i.e. 
an average of 3,948 locations per individual). All capture 
procedures were in accordance with approved animal care 
protocols (Memorial University of Newfoundland animal 
use protocol #19-01-EV).

Sample collection and preprocessing

We collected elk faecal pellet and hair samples from May 
to August 2019, targeting 11 of the 18 collared individuals 
(hereafter “target individuals”). Collars recorded locations 
of the elk every 30 min during the period of collection, sub-
jectively allowing us to identify potential bed-sites by look-
ing for areas with a relatively large number of location points 
close to one another (hereafter “cluster”). After identifying 
clusters, we searched for recently shed hair and fresh fae-
cal pellets with the appearance of a fresh mucus layer (Le 
Saout et al. 2016). We collected faecal samples in a sealable 
plastic bag and stored them in a – 18 °C freezer as quickly 
as possible following collection, since exposure to warm 
temperatures, typical of our study area during the sampling 
period, degrades the genetic material in faecal samples (Rea 
et al. 2016). All samples were stored in the freezer between 
29 and 410 min following collection.

We attempted to increase the odds of sampling a target 
individual by preferentially collecting samples on or within 
5 m of its suspected bed, identifiable as an area of depressed 

vegetation within the cluster. In many ungulates, a single 
bedding bout typically only lasts between one and a few 
hours (Cederlund 1989; Kuzyk and Hudson 2007). However, 
inactive bedding periods are interspersed with alternating 
periods of feeding in the same vicinity (Green and Bear 
1990; Naylor et al. 2009), and in our study the long peri-
ods of time target individuals spent in the vicinity of their 
samples introduced some uncertainty about which cluster of 
points was recorded at the time the sample was deposited. 
To ensure our models were robust to this uncertainty, we 
specified three location points belonging to the target indi-
vidual that were closest to each sample as “cluster centres” 
for use in our machine learning models. Finally, we counted 
the number of other bed sites within 20 m of the sample 
as a measure of the number of other elk in the same area 
(hereafter “activity level”; Fig. 1). We chose a search radius 
of 20 m as a compromise between selecting a search area 
larger than the accuracy of the GPS collars (8–15 m; VEC-
TRONIC Aerospace GmbH, Berlin, Germany) and main-
taining a small enough area to visually keep track of which 
beds we had already counted.

During elk captures, whole blood samples were taken 
from each collared individual to serve as a genetic bench-
mark. We determined whether non-invasive samples 
belonged to target individuals by comparing DNA extracted 
from them to the genetic benchmarks. We sent all faecal 
pellets, hair samples, and blood samples collected during 
capture to the Natural Resources DNA Profiling & Foren-
sics Centre in Peterborough, Ontario for extraction and pro-
cessing of genetic material. Extractions were performed on 
10–15 hairs with roots or 1–2 faecal pellets subsampled from 
each of the original samples using the DNeasy 96 Blood and 
extraction protocol (Qiagen, Germany). Individuals were 
then identified by amplifying and sizing between 8 and 9 
microsatellite loci (BM4513, BM1009, IGF, AF102257, 
BM4107, BM1225, BM848, BM5004, BL42) using Gen-
eMarker software (SoftGenetics, USA; data are provided in 
Supplementary File 1, DNA_data.xlsx). We assigned each 
faecal pellet and hair sample a classification of either “posi-
tive” or “negative” based on whether its genetic material 
matched the target individual at the cluster.

Supervised machine learning

We used supervised machine learning to build a model that 
could distinguish which samples belonged to the target indi-
vidual, i.e. were positively identified. Machine learning is 
a suite of algorithm-based techniques aimed at making pre-
dictions about “testing” data based on observed patterns in 
“training” data used to build the model. When supervised, 
the patterns in both training and testing data are known, 
and the machine learning algorithm seeks to maximize 
the predictive performance of the model. In classification 
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applications, machine learning classifiers predict whether 
observations fall into one of two or more classes, such as 
positive and negative identifications.

To prioritize locations for sampling, we wanted to build 
the best model for classifying positively and negatively iden-
tified samples using only predictor variables that could be 
collected remotely. Based on the duration of bedding bouts 
in other ungulate species (Cederlund 1989), we anticipated 
that the use of bedding sites associated with samples would 
not exceed four consecutive hours. Thus, we used nine 
30-min location points centred at each of the potential clus-
ter centres, i.e. four location points before and after each 
cluster centre, to measure characteristics of the target indi-
vidual’s movement track capable of distinguishing bedding 
behaviour. First, we measured cluster tightness by deter-
mining how many of the eight surrounding location points 
fell within a 32 m buffer of the cluster centre, including the 
cluster centre (Fig. 1B; also see Appendix 1 for details about 

how we determined the buffer radius). We also calculated 
the average nearest-neighbour distance among each of the 
nine location points, including the cluster centre (Fig. 1C). 
In addition to movement characteristics, we used the activity 
level in the area of the cluster (i.e. the number of bed sites 
within 20 m of the sample) and proximity of the sample 
to each cluster centre (i.e. the nearest point to the sample 
from each cluster) as predictor variables. While both the 
activity level and proximity to cluster centre predictors must 
be collected in the field, they could improve the predictive 
performance of the model. All covariate data are provided 
in Supplementary File 2 (cluster_data.xlsx).

We applied five different classifiers to the training model 
to determine which best predicted the two classes of samples 
in our testing data: linear discriminant analysis (LDA), naïve 
Bayes (NB), K nearest neighbour (KNN), classification 
and regression trees (CART), and support vector machines 
(SVM). We also explored the random forest (RF) classifier 

Fig. 1  Predictor variable data 
collected at sample locations. A 
The three nearest GPS location 
points to the sample are cluster 
centres (green circles), and i 
is the distance to the nearest 
point. B Cluster tightness is the 
number of points in the cluster 
(white circles) falling within 
32 m of each cluster centre. 
C Average nearest-neighbour 
distance between all points in 
the cluster. D Number of beds 
within 20 m of the sample
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as an alternative regression tree method, owing to its popu-
larity and demonstrated performance for classification (Bahn 
and McGill 2013). However, performance of the random for-
est classifier was negligibly different from CART (data not 
shown), so we considered only CART and not RF in our final 
analysis. Classifiers can be categorized based on the process 
by which they assign observations to classes. For example, 
LDA and NB compute decision boundaries between the 
classes based on the Bayesian probability that each obser-
vation belongs to either class (Casella et al. 2013; Genoud 
et al. 2020). KNN makes classifications based on the major-
ity class of the K observations closest to a given observa-
tion, and CART iteratively builds decision trees based on 
the attributes of all observations, then assigns observations 
to classes according to the class to which the majority of 
observations belong on that branch of the tree (Casella et al. 
2013). SVM separates classes by hyperplanes that maximize 
the distance between classes, with its position dependent on 
observations termed “support vectors” that occur along the 
margin of the hyperplane (Casella et al. 2013).

The performance of a machine learning classifier is based 
on it being able to provide a flexible fit to patterns in the 
training data without overfitting. Overfitting is a conse-
quence of too much flexibility: the model fits to noise in the 
training data, ultimately reducing its accuracy when applied 
to testing data. The machine learning classifiers we used all 
vary in their levels of flexibility, with nonlinear methods 
like radial SVM being some of the more flexible, and LDA 
and linear SVM being some of the least flexible. In addition 
to selection of the classifier itself, changing the values of 
constants within the equation used to calculate the prob-
ability of an observation belonging to either class provides 
further control over the degree of flexibility. For each clas-
sifier, we tested a range of these constants, termed “tuning 
parameters”, which adjusted the algorithms across a range of 
flexibility. We selected the optimal tuning parameter values 
to maximize the classification accuracy of each classifier. 
We also selected among three types of SVM models at this 
stage: linear, polynomial, and radial SVM range from least 
to most flexible based on the shape of the hyperplane that 
separates classes. Details about the tuning parameters tested 
in each classifier are provided in the section S2 of the Sup-
plementary Material. After selecting the tuning parameters, 
we assessed the performance of all combinations of the five 
classifiers and four predictor variables based on the mean 
percent accuracy of their classification of the testing data.

We also compared model performance using receiver 
operating characteristics (ROC). ROC curves convey pre-
dictive accuracy by plotting the rate of true positive identi-
fications against false positive identifications predicted by 
a model. The area under the curve (AUC) quantifies this 
comparison, with AUC values closer to 1 indicating higher 
model performance (Fawcett 2006).

Model validation

We used tenfold cross-validation with five repeats to first 
select the optimal tuning parameters for each algorithm, 
and then again to select the combination of algorithm and 
predictor variables that maximized model accuracy. Cross-
validation is a resampling method that evaluates the predic-
tive ability of a model by repeatedly testing it on new sets of 
training and testing data split from the initial data set. In ten-
fold cross-validation, the data are randomly partitioned into 
ten “folds”, one of which is used for testing and the remain-
ing nine for training. After all ten folds are used successively 
for both training and testing, ten new folds are partitioned 
and the process is repeated. Imbalance between observa-
tions in the testing and training set—such as in our study, 
where positively identified samples outnumbered negatively 
identified samples 3:1—can result in misclassification of the 
minority class (Liu et al. 2011). Thus, we also undersam-
pled the majority class in each cross-validation fold, match-
ing it to the number of samples in the minority class. We 
compared performance across the five models according to 
their mean accuracy from all cross-validation iterations. To 
ensure neither sample type nor collar relocation frequency 
influenced model accuracy, we also ran the models again 
with hair and faecal pellet data separated, and after having 
rarefied the GPS data to 1-h relocations by removing every 
second location in the cluster.

Tenfold cross-validation is used for supervised machine 
learning applications when an independent testing set is 
not available to test the predictive capabilities of a model 
(Kindschuh et al. 2016; Sánchez-González et al. 2018). 
However, when training and testing data are not independ-
ent, dependence structures—where nearby observations 
are more correlated than distant ones—can lead to overly 
optimistic conclusions about model performance that do not 
necessarily hold when the model is applied to a novel data 
set (Roberts et al. 2017; Gregr et al. 2018). As a solution, 
blocked cross-validation has been shown to produce more 
realistic assessments of model performance (Roberts et al. 
2017). In blocked cross-validation, the data are partitioned 
by dependence structures rather than randomly into folds. 
We suspected that the predictor variable data belonging to a 
single elk may be correlated, and that this dependence struc-
ture may bias model performance estimates. Thus, we also 
performed a separate blocked cross-validation to confirm 
whether the accuracy of the top model agreed with tenfold 
cross-validation. We partitioned the 11 elk into folds and 
used the data from 10 elk as training data to predict the 
positively identified samples of the remaining elk.
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Results

We collected 114 hair and faecal pellet samples between 
May and August 2019. Of those, 43 yielded recoverable 
genetic material that we could compare to known individuals 
in the population. While we recorded three cluster centres 
for 42 of 43 samples, for one of the samples it was only pos-
sible to identify a single cluster, leaving us with a total of 
126 clusters in the dataset. After calculating cluster tightness 
and the nearest neighbour distance between cluster points, 
we then compared the performance of these two predictors, 
activity level (i.e. number of bed sites within 20 m of the 
sample), and distance between the cluster centre and sample 
for predicting whether samples were positive or negatively 
identified as belonging to a target individual. In total, we 
tested 75 different combinations of predictor variables and 
machine learning classifiers.

Positively and negatively identified samples differed 
across two of the predictor variables. There was less activ-
ity, i.e. there were fewer bed sites within 20 m of the sam-
ple, for positively identified versus negatively identified 
samples ( F

1,124
 = 13.91, p = 0.0003; Fig. 2A). The clusters 

surrounding positively identified samples were also tighter 
than those surrounding negatively identified samples, i.e. 
there were more location points within 32 m of a positively 
identified cluster centre than those negatively identified 
( F

1,124
 = 13.69, p = 0.0003; Fig. 2B). However, neither the 

average nearest neighbour distance between cluster points 
( F

1,124
 = 2.354, p = 0.13; Fig. 2C) nor the proximity of 

the sample to the cluster centre ( F
1,124

 = 0.389, p = 0.53; 
Fig. 2D) differed between positively and negatively identi-
fied samples.

Overall, cluster tightness and activity level were the 
best predictor variables for positively identified samples 
(Table 1). The NB classifier performed best according to 
tenfold cross-validation, with its predictive accuracy averag-
ing 77% when both cluster tightness and activity level were 
included as predictor variables in the same model. However, 
the accuracy of the best model that included only remotely 
sensed data, i.e. cluster tightness, was less accurate at 71% 
(Table 1). This was largely due to a decrease in sensitivity 
of the model, which refers to its ability to correctly classify 
positive identifications, i.e. its ability to avoid false nega-
tives. When activity level was removed, sensitivity dropped 

Fig. 2  Box plots showing the 
median (horizontal black line), 
quartiles (box ends and vertical 
lines), and outliers (points) 
of each predictor variable, 
separated by positive and nega-
tive identification of samples. 
A Compares activity level (the 
number of other bed sites within 
20 m of the sample location), B 
compares cluster tightness (the 
number of points within a 32 m 
buffer of the sample location), 
C compares the average nearest 
neighbour distance among all 
points in a cluster, and D com-
pares the distance between the 
sample and cluster centre
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from 64 to 37%. However, specificity—which refers to the 
ability of the model to correctly classify negative identifica-
tions, i.e. its ability to avoid false positives, was still high at 
85% even without the activity level predictor (Table 1). ROC 
curves corroborated that the combination of cluster tightness 
and activity level better balanced specificity and sensitivity 
(AUC = 0.73 versus AUC = 0.55 for cluster tightness only; 
Table 1, Fig. 3). For the remaining combinations of predic-
tor variables and classifiers, neither the addition of nearest 
neighbour distance between cluster points nor the proxim-
ity of the sample to the cluster centre improved predictive 
accuracy (Table 1). Model accuracy declined by only 1% 
when we rarefied the GPS data to 1-h relocations (Appen-
dix Table A2-1), and models were slightly more accurate 
(0.7–1%) when we modelled the hair and faecal pellet data 
separately (Appendix Table A2-2). However, the accuracy 
of the cluster tightness only model declined by > 10% when 
we rarefied the data to 1-h relocations.

Results from the blocked cross-validation largely agreed 
with tenfold cross-validation, with cluster tightness and 
activity level as the best predictor variables. However, the 
model lost accuracy and specificity in comparison to tenfold 
cross-validation, dropping from mean 77% accuracy to 71% 

accuracy, and mean 83% specificity to 74% specificity when 
blocked cross-validation was used (Appendix Table A2-3). 
In contrast, the sensitivity of the blocked cross-validation 
model increased in comparison to tenfold cross-validation 
from 64 to 71%. The model with only cluster tightness fol-
lowed a similar pattern, decreasing from 71% accuracy 
to 63% accuracy, and 85% specificity to 65% specificity, 
while sensitivity increased from 36 to 53%. A full list of 
model predictor variables, classifiers, and their performance 
metrics are provided in section S2 of the Supplementary 
Material.

Discussion

We assigned non-invasively collected hair and faecal pellets 
to individual elk by capitalizing on the characteristics of bed 
sites identified by their GPS point clusters. This approach 
can improve how we interpret information from non-inva-
sive samples because stronger inferences can be gained by 
accounting for variation among individual animals. Indeed, 
opportunistically collecting multiple samples from the same 
individuals in the wild is challenging (but see Giroux et al. 

Table 1  Performance comparison of all combinations of predic-
tor variables for distinguishing positively from negatively identified 
samples according to tenfold cross-validation, divided into models 

including both remotely sensed and site-level data versus remotely 
sensed data only, and ranked in order of mean percent accuracy

The bolded predictor variable combinations correspond to the most accurate model with both remotely sensed and site-level data (buffer + bed), 
and the most accurate model using only remotely sensed data (buffer)
1 Predictor variables include buffer = cluster tightness (number of points within 32 m buffer of cluster centre); nearest = distance from sample to 
nearest cluster centre; nn_dist = average nearest neighbour distance among points in cluster; bed = number of beds within 20 m of sample
2 Classifiers include naïve Bayes (NB), linear discriminant analysis (LDA), and radial support vector machines (SVM)

Predictor  variables1 Classifier2 Performance metric (95% CI)

Percent accuracy Percent sensitivity Percent specificity AUC 

Remotely sensed and site level
buffer + bed NB 76.6 (72.8, 80.3) 64.3 (56.3, 72.2) 82.6 (78.3, 86.8) 0.73
Bed LDA 74.7 (71.5, 77.8) 47.0 (39.4, 54.5) 86.4 (83.2, 89.6) 0.65
buffer + nn_dist + bed NB 74.6 (71.1, 78.0) 55.4 (47.1, 63.6) 82.0 (78.3, 85.7) 0.69
buffer + bed + nearest NB 74.3 (71.7, 76.9) 60.9 (54.4, 67.4) 80.5 (77.4, 83.5) 0.69
bed + nearest LDA 73.8 (70.8, 76.8) 52.3 (45.0, 59.5) 81.5 (77.3, 85.7) 0.65
nn_dist + bed LDA 73.2 (69.6, 76.8) 59.8 (50.9, 68.7) 79.2 (75.6, 82.9) 0.66
buffer + nn_dist + bed + nearest LDA 71.5 (68.7, 74.3) 63.1 (54.3, 71.8) 74.2 (70.3, 78.0) 0.71
nn_dist + bed + nearest SVM 67.7 (64.0, 71.3) 61.1 (52.4, 69.8) 70.7 (65.4, 76.0) 0.69
Remotely sensed only
Buffer NB 70.5 (66.7, 74.3) 35.7 (28.9, 42.5) 84.7 (80.3, 89.1) 0.55
buffer + nearest NB 68.3 (65.3, 71.3) 39.5 (32.3, 46.6) 81.2 (77.7, 84.8) 0.60
buffer + nn_dist NB 67.5 (63.7, 71.2) 35.5 (28.2, 42.7) 81.3 (76.7, 85.9) 0.58
buffer + nn_dist + nearest NB 65.8 (62.0, 69.7) 37.9 (29.2, 46.5) 79.0 (74.3, 83.6) 0.59
Nearest NB 60.9 (57.0, 64.8) 28.3 (19.7, 36.8) 74.4 (68.1, 80.7) 0.46
nn_dist NB 60.3 (55.8, 64.8) 27.0 (19.5, 34.4) 76.2 (69.6, 82.8) 0.47
nn_dist + nearest NB 59.7 (56.7, 62.6) 33.4 (26.5, 40.2) 76.6 (72.8, 80.5) 0.47
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2016; Fattorini et al. 2018; Dulude-de Broin et al. 2019; 
Hunninck et al. 2020). Furthermore, labour-intensive field-
work and financial costs associated with non-invasive sam-
ple collection from individuals can be prohibitive (Taberlet 
et al. 1999). In our study, supervised machine learning mod-
els including both the tightness of GPS point clusters and 
activity level, i.e. the number of bed sites within 20 m, at 
the bed sites allowed us to confirm that samples belonged 
to a specific individual. We also found that naïve Bayes 
and linear discriminant analysis outperformed more flex-
ible classifiers like support vector machines and decision 
trees that are often reported to be highly accurate (Elith et al. 
2008; Genoud et al. 2020), which may be the result of the 
more flexible classifiers overfitting the patterns in our small 
dataset (Raudys and Jain 1991). While other machine learn-
ing approaches have used GPS point clusters to remotely 
interpret elk behaviour (Van Moorter et  al. 2010), ours 
links individuals to faecal or hair samples from which diet, 
physiology, and parasite load information might be obtained. 
We submit our approach is also general enough to adapt 
for other species with similar GPS point clusters, making 

it a promising way forward for investigating responses of 
individuals within animal populations to their environment.

We found that cluster tightness, measured as the number 
of points occurring within a 32 m buffer of the cluster centre, 
allowed us to distinguish positively and negatively identified 
samples with high accuracy. We also expected the nearest-
neighbour distance between cluster points to provide another 
indication of the individual spending time in the vicinity of 
the sample. However, it did not improve the predictive per-
formance of the model. Others have found distance measures 
useful for predicting carcass visitation by carnivores that 
exhibit different movements from bedding ungulates. For 
example, the maximum distance of nearby non-cluster points 
to the cluster was predictive of carcass type scavenged by 
brown bears (Ursus arctos; Ebinger et al. 2016). Carcass 
visitation by carnivores is characterized by multiple and 
lengthy visits to the same location, interrupted by periods 
of rest or other unrelated activity ( Zimmerman et al. 2007; 
Ebinger et al. 2016). In contrast, elk and other herbivores 
forage at multiple locations interspersed with movements 
between patches and long latency to return to the same patch 
(Seidel and Boyce 2015). Thus, while nearest neighbour dis-
tance within a cluster may indicate a return to the carcass 
in carnivores, in herbivores like elk it may instead measure 
directed movements between different foraging patches and 
resting sites. These differences in their movement behaviour 
from carnivores would make the number of points within a 
32 m buffer of the target point a more consistent predictor 
of herbivore location clusters than nearest-neighbour dis-
tance, and therefore a better predictor of correctly identified 
samples.

We also expected the distance between the nearest cluster 
centre and the sample to distinguish positively and nega-
tively identified samples. While this variable did not appear 
in the most accurate model, we suspect it was excluded 
because of collar location accuracy rather than elk behav-
iour. While our mean collar location accuracy according to 
the manufacturer specifications is 8–15 m (VECTRONIC 
Aerospace GmbH, Berlin, Germany), the majority of dis-
tances between the cluster centre and sample in our study 
were well under 20 m for both positively and negatively 
identified samples (Fig. 3D). However, GPS collar locations 
are only accurate if the distance between subsequent loca-
tions is large and exceeds measurement error of the device 
(Jerde and Visscher 2005). This suggests that any differ-
ences in distance between positively and negatively identi-
fied samples and cluster centres might have been masked by 
measurement error. Indeed, Frair et al. (2005) were unable 
to parse movement behaviour of elk at spatial scales finer 
than the measurement accuracy of their GPS collars. Inter-
estingly, this measurement error can produce the appearance 
of spurious 180° angles between subsequent location points 
even when the collar is stationary (Hurford 2009; Bjørneraas 

Fig. 3  Receiver operating characteristic (ROC) curves for the most 
accurate model (buffer + bed), and the most accurate model includ-
ing only remotely sensed predictor variables (buffer). ROC curves 
were drawn based on the model’s iterative classification of samples 
as positively and negatively identified. The dashed diagonal line rep-
resents a model with a random success rate of classifying positively 
and negatively identified samples, and curves in the upper left portion 
of the graph represent models with classification performance bet-
ter than random (buffer = cluster tightness, number of points within 
32  m buffer of cluster centre; bed = activity level, number of bed 
sites within 20 m of sample). Area under the curve (AUC) provides a 
numerical measure of model performance, where AUC = 1 indicates a 
model with perfect prediction capability
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et al. 2010). Future applications of this approach may be 
able to use the presence of these 180° turn angles to more 
precisely pinpoint the location of the target individual rela-
tive to the sample.

Our goal was to develop a model that could distinguish 
correctly from incorrectly identified samples without site-
level characteristics to prioritize sampling locations. How-
ever, we found that activity level substantially improved 
model accuracy when paired with cluster tightness. Simi-
larly, cluster models for identification of foraging in GPS-
collared animals are also often improved by site-level infor-
mation such as vegetation productivity (Seidel and Boyce 
2015), habitat characteristics (Knopff et al. 2009), and the 
availability of alternate food sources (Ebinger et al. 2016). 
However, for those applications models without site-level 
characteristics are often more important because the objec-
tive is to remotely identify foraging behaviour without 
ground truthing. In contrast, our framework is better suited 
to the collection of site-level characteristics because each 
cluster must be visited to obtain a faecal or hair sample. 
Thus, as a compromise between purely remotely sensed data 
for prioritization of sampling locations and the need for site-
level information to confirm sample identification, we sug-
gest a two-step approach. Areas for sampling can first be tar-
geted using the less accurate model that includes only cluster 
tightness as a predictor, then the positive identification of 
those samples was confirmed by the addition of activity 
level to the model. However, we caution that the accuracy of 
models using only remotely sensed data should be assessed 
for relocation frequencies less frequent than 30 min, as our 
remotely sensed only models were substantially less accurate 
when we rarefied the data to 1-h relocation frequencies.

While the cluster tightness and activity level model accu-
rately predicted positively identified samples using tenfold 
cross-validation, accuracy declined when we cross-validated 
the model blocked by individuals. One explanation for this 
loss in accuracy is related to data. Unlike tenfold cross-val-
idation where we balanced classes by undersampling, we 
were unable to do so for individually blocked cross-valida-
tion because 6 of the 11 individuals had either all positively 
or all negatively identified samples. Thus, the class imbal-
ance in blocked cross-validation may have led to a greater 
number of misclassifications (Liu et al. 2011). Alternatively, 
the reduction in model accuracy with blocked cross-valida-
tion may be explained by the presence of additional indi-
viduals at some bed sites that was not captured by our bed 
site activity measure. In elk, home range size fluctuates with 
local competition for forage (Barker et al. 2019). However, 
because of selective encounters among familiar individuals, 
fine-scale social interactions saturate even as home range 
overlap continues to increase (Vander Wal et al. 2014). Thus, 
we may have underestimated the presence of individuals that 
shared space, but did not bed with our target individuals, 

particularly if some of the individuals occupied home ranges 
with higher resource availability and thus a greater density 
of individuals. Future versions of this analysis could test 
whether a variable to account for productivity at the sample 
location, such as habitat type or normalized difference veg-
etation index, improves classification accuracy.

Though our approach is appropriate for any species with 
periodic bedding behaviour, we only tested its performance 
on female elk during the calving season, raising several 
important considerations for its application to other sys-
tems. While female elk only isolate themselves for several 
days before and after parturition (Altmann 1952), they typi-
cally spend weeks following birth of their calves in smaller 
nursery herds with other female elk (Geist 2002), many of 
which were also collared in our study. Thus, the probability 
of our sampling a specific individual was likely different 
than it would have been during other seasonal periods like 
winter that are characterized by larger, mixed sex groups. 
Furthermore, male and female elk differ in both their mini-
mum group size and group dispersion, which depend on 
increasing population size for female elk (Vander Wal et al. 
2013). Thus, the accuracy of the models we tested may dif-
fer for male elk. The importance of predictors like activity 
level may also differ for less gregarious ungulate species 
like moose, where, for example, adult bed sites are found 
less frequently in close proximity (McCann et al. 2016). The 
duration of bedding bouts also varies seasonally and across 
species (Cederlund 1989; Kuzyk and Hudson 2007), and 
thus adjusting the temporal period represented by clusters 
may affect model performance.

We demonstrated that characteristics of GPS point clus-
ters can be used to target individual female elk for collec-
tion of hair and faecal samples, providing information about 
physiology, diet, and parasite load. Accounting for individ-
ual differences in physiological markers like hormone lev-
els is essential for correct interpretation of population level 
responses to stressors (Bonnot et al. 2018). Similarly, track-
ing individual differences in diet can reveal how populations 
of herbivores balance competition for food and cope with 
plant chemical defenses (Jesmer et al. 2020). Linking para-
site load to age and sex of individuals can disentangle the 
influence of life history stage and environmental conditions 
on their susceptibility (Seeber et al. 2020). Our approach 
offers an efficient, cost-effective solution for sampling indi-
vidual elk, and possibly other species fit with biotelemetry 
collars. For example, our approach is also applicable for 
other species like moose (McCann et al. 2016) and large 
carnivores (Knopff et al. 2009; Ebinger et al. 2016) that pro-
duce clusters of GPS locations at bedding and feeding sites. 
This increased access to physiological, dietary, and health 
information from individuals will strengthen our understand-
ing of animal responses to their environments.
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Appendix 1: Method for deciding buffer 
radius of cluster tightness variable

We wanted to determine which movement track charac-
teristics were most important for distinguishing positively 
and negatively identified samples. In a similar cluster-based 
method, Knopff et al. (2009) identified kill sites using the 
number of cougar (Puma concolor) location points within 
a buffer of the geometric centre of a cluster. Similarly, we 
used the number of location points within a buffer of some 
radius from the cluster centre (hereafter “cluster tightness”) 
as a predictor in our models. However, we also wanted to 
determine the buffer radius that maximized the difference in 
number of location points between positively and negatively 
identified samples. Thus, we created a series of buffers with 
radii ranging from 1 to 100 m by increments of 1 m. We first 

determined the average number of location points within 
each buffer that were associated with either positively or 
negatively identified samples (Fig. A1-1A). We then selected 
the buffer radius for the cluster tightness predictor that maxi-
mized the difference in number of location points between 
the positively identified samples. We determined this opti-
mum radius to be 32 m (Fig. A1-1B).

See Fig. A1-1.

Appendix 2: Additional tables

See Tables A2-1, A2-2, A2-3.

Fig. A1‑1  Comparison of cluster tightness between positively and 
negatively identified samples, where tighter clusters have more points 
falling within a smaller-radius buffer surrounding the cluster centre. 
In A, the proportion of points falling within a buffer of each radius 
from 1 to 100 m is shown for positively identified (blue) and nega-

tively identified (red) samples. In B, the mean difference in the num-
ber of points within the buffer is shown between positively and nega-
tively identified samples. The green dashed line indicates the largest 
mean difference at buffer radius of 32 m
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