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A B ST R A CT 

How, when, and where animals move during mating periods directs gene-flow patterns across landscapes. Traits associated with movement, 
such as movement ability and migratory behaviour, are sometimes correlated with population genetic structure, but this relationship depends 
on where and when mating occurs relative to annual movements. With their wide diversity in behaviours and life-history strategies, bats pro-
vide a testing ground for hypotheses about population structure related to migration and mating. We used a global sample of microsatellite 
data (N = 233 sampling locations from 17 bat species) associated with published studies to examine links between genetic variation and short-
distance, long-distance, or non-migratory strategies that also relate to varied mating strategies. The genetic measures we tested were population-
specific differentiation, gene diversity, and allelic richness. Using Bayesian models that accounted for phylogenetic distances among species and 
spatial autocorrelation, we identified no correlations between migration strategy and genetic variation. Our results suggest that hypotheses about 
genetic structure being mediated by migration might not hold, in general, for bat species. We discuss the need for continued research into the 
complex association of ecological, biogeographical, and behavioural factors that facilitate gene flow among populations, especially in species with 
diverse movement patterns.
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I N T RO D U CT I O N
Geographical, ecological, and behavioural barriers to movement 
can shape patterns of gene flow and generate structured popu-
lations (Coulon et al. 2006, Kekkonen et al. 2011). Movement 
ability (the capacity to fly, swim, or move across potential bar-
riers) generally exhibits a negative correlation with genetic 
structure, because reproductive individuals from populations of 
highly motile species are more able to interact and exchange gen-
etic material (Bohonak 1999, Bradbury et al. 2008). However, 
such movement can also promote genetic differentiation by 
increasing the rates at which novel habitats are encountered 
(Phillimore et al. 2006).

As the only flying mammals, bats (Order Chiroptera) are 
an interesting group to study connections between movement, 
mating, and genetic patterns because there is wide variation in 
the distances that bat species travel to mate. Migratory behaviour 

(the round-trip, seasonal movement of organisms between lo-
cations) has been related to increased genetic diversity in taxa 
as diverse as butterflies (García‐Berro et al. 2023), mammals 
(Gustafson et al. 2017), and fish (Kovach et al. 2013). In bats, mi-
gration has been correlated with population structure (Burland 
and Worthington Wilmer 2001, Olival 2012, Taylor et al. 2012, 
Moussy et al. 2013, Burns and Broders 2014). However, migra-
tion as a predictor of genetic structure could be improved by 
explicitly taking into account the social structures of where and 
when mating occurs (Heckel and Von Helversen 2003, D’Urban 
Jackson et al. 2017).

Bat species that migrate long distances, i.e. outside of the re-
gion where they were born, are likely to mate during autumn mi-
gration or winter (Cryan and Brown 2007, Lausen et al. 2023) 
or even during spring migration (Clerc, Rogers and McGuire 
2021). There is little evidence of population structure in several 
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North American and European long-distance migratory bat 
species, suggesting that migratory routes are not distinct un-
less there are geographical barriers and that species form single, 
panmictic populations (Petit and Mayer 2000, Korstian et al. 
2015, Vonhof and Russell 2015, Sovic et al. 2016). Bat species 
that migrate over shorter distances, within the breeding range, 
often mate at swarming sites or hibernacula (Fenton 1969, van 
Schaik et al. 2015). Swarming behaviour can maintain gene flow 
between genetically differentiated populations of temperate bat 
species, although levels of gene flow can vary, possibly with re-
gional physiography (Kerth et al. 2003, Miller-Butterworth et al. 
2003, Furmankiewicz and Altringham 2007, Davy et al. 2015). 
Population structure in non-migratory, or sedentary, bats varies 
greatly with sex-biased dispersal, mating behaviours, and move-
ment ability (as a result of lower flight capability and geograph-
ical barriers to movement), but in general there is evidence that 
structure is greater in non-migratory than in migratory bats 
(Burland and Worthington Wilmer 2001, Moussy et al. 2013). 
Relatively limited movements to mate can limit gene flow among 
populations and lead to significant isolation by distance and gen-
etic differentiation at small geographical scales (Wright et al. 
2018, Budinski et al. 2019).

Not all research supports this general pattern, however, be-
cause migratory and non-migratory populations within species 
of birds and bats can be genetically indistinct (Buerkle 1999, 
Russell et al. 2005). The reason for inconsistent conclusions 
about the association between migratory behaviour and genetic 
structure is unclear, but the results of previous review studies are 
difficult to compare because of varying types of markers, meas-
ures of genetic variation (Moussy et al. 2013), a lack of phylogen-
etic control (Olival 2012) or statistical treatment (Burland and 
Worthington Wilmer 2001, Moussy et al. 2013), or a disregard 
of mating behaviour. Regardless of the distance that a population 
migrates, a key assumption about gene flow is that the migration 
movement results in breeding (Petit and Mayer 2000); if strongly 
migratory species mate on the summer breeding grounds, as 
non-migrants do, their genetic structure would not be expected 
to differ from that of non-migrants (Moussy et al. 2013). A new 
standardized examination of potential interplay between migra-
tion and mating, hence gene flow, can provide additional insight 
into how these behavioural traits interact with genetic variation 
in bat species or populations (Olival 2012, Papadopoulou and 
Knowles 2016).

Bats also vary widely in other ecological, morphological, and 
behavioural traits, and hypotheses about order-wide trends in 
population structure become complicated when certain species 
exhibit traits that support conflicting hypotheses. Predictions 
of degrees of genetic subdivision are usually based on wing 
morphology or body size, migratory behaviour, monogamous 
vs. polygynous breeding systems, roost selection, and fruit- or 
nectar-based diets (McCracken and Wilkinson 2000, Fleming 
and Martino 2020). But polygynous bat species can be migra-
tory or non-migratory, frugivorous or insectivorous (McCracken 
and Wilkinson 2000). Random or promiscuous mating reduces 
relatedness in family groups and increases genetic diversity 
(McCauley and O’Donnell 1984, Gohli et al. 2013); therefore, 
an effect attributed to migration could potentially be confounded 
by the mating strategy. Bat species worldwide face threats re-
lated to climate change, habitat loss, overhunting, and, in North 

America, novel fungal pathogens (Lorch et al. 2011, Frick et al. 
2020). Identifying traits that directly affect genetic structure can 
help to identify groups of bats that might be at greater risk of loss 
of genetic variation, thereby requiring enhanced monitoring or 
protection.

Our goal was to leverage publicly available genetic data to 
revisit the question of how well migratory behaviour predicts 
genetic variation in bats, particularly where migration might fa-
cilitate mating activity, hence gene flow among populations. We 
hypothesized that the weakest population-specific genetic dif-
ferentiation (Weir and Goudet 2017) would occur in bats that 
migrate the furthest and for which there is evidence of mating 
during migration. We classified bat species into three migration 
classes (long-distance, regional, and non-migrant) to test an 
association between migration distance and genetic differenti-
ation. We also classified species into two mating classes (single 
male/multi-female and multi-male/multi-female) to examine 
the association between migration distance, mating strategy, 
and genetic differentiation and to examine whether our inter-
pretation of migration effects could be confounded by poten-
tial effects of mating strategy. To provide a genetic context for 
these models of population genetics and behavioural traits, we 
assessed differences in three genetic measures (genetic differen-
tiation, gene diversity, and allelic richness) at a species level.

M AT E R I A L S  A N D  M ET H O D S

Genetic measurement collection methods
The microsatellite data used in the present genetic analyses were 
compiled in previously published work (Schmidt et al. 2020). 
They were originally published in multiple research articles 
(Buchalski et al. 2014, Burns and Broders 2014, Baird et al. 2015, 
Boston et al. 2015b, Johnson et al. 2015, Moussy et al. 2015b, 
Razgour et al. 2015b, Witsenburg et al. 2015b, Günther et al. 
2016b, Vesterinen et al. 2016b: p. 20; Afonso et al. 2017b, Cleary 
et al. 2017b, Davy et al. 2017, Lausen et al. 2019) and several 
online repositories (Buchalski et al. 2013, Boston et al. 2015a, 
Burns, Frasier and Broders 2015, Moussy et al. 2015a, Razgour 
et al. 2015a, Witsenburg et al. 2015a, Baerwald and Barclay 
2016, Günther et al. 2016a, Johnson et al. 2016, Vesterinen et 
al. 2016a, Afonso et al. 2017a, Cleary et al. 2017a, Santos and 
Meyer 2017, Davy et al. 2018, Lausen et al. 2018). In total, we 
attained data from 17 bat species, representing 233 populations 
and 8095 individuals (Supporting Information, Table S1). We 
used all individuals for gene diversity and allelic richness met-
rics, and owing to one population for some groups, we used a 
subset of samples to estimate genetic differentiation, which in-
cluded 12 species (228 populations with 7618 individuals) (Fig. 
1; Supporting Information, Table S2). Gene diversity was calcu-
lated with Adegenet v.2.1.5 ( Jombart 2008), and genetic dif-
ferentiation and allelic richness were calculated with hierfstat 
v.0.5.7 (Goudet 2005).

Behaviour classification methods
We used data from primary literature and online species accounts 
to classify each species into discrete migration and mating classes 
(Davis and Hitchcock 1965, Bradbury and Vehrencamp 1977, 
Leu 2000, McCracken and Wilkinson 2000, Vingiello 2002, 
Keinath 2004, Wohlgemuth et al. 2004, Cryan and Brown 2007, 
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Ibáñez et al. 2009, Dondini and Vergari 2010, Morrison 2011, 
McGuire et al. 2012, Hans 2013: p. 201; Moussy et al. 2013, 
Cryan et al. 2014, Bentley 2017, Fraser et al. 2017, Taylor and 
Tuttle 2019, Encarnação and Becker 2020, Martinoli et al. 2020, 
Ruedi 2020, Godlevska et al. 2021, GBIF Secretariat 2022a, b, c, 
d, 2023, Ibáñez and Juste 2022, Lausen et al. 2022, Jarso 2023, 
UNEP/EUROBATS Secretariat 2023).

Species were classified into three distance-based migra-
tion classes (Supporting Information, Table S3), following the 
guidelines of Fleming (2019), and generally corresponding to 
the distance categories used in other work (Burns and Broders 
2014). Species that are thought to remain within a 50 km ra-
dius year-round were classified as non-migratory. Species that 
are known to migrate 100–500 km between summer and winter 
roosts within the same region were considered regional mi-
grants, and species that migrate seasonally ≥1000 km between 
different regions were considered long-distance migrants. 
Although there was only partial overlap in species between the 
current and previous studies (Olival 2012, Moussy et al. 2013, 
Burns and Broders 2014), our classifications generally agreed. 
In rare cases of disagreement (i.e. we classified Myotis blythii as 
non-migratory, whereas Moussy et al. (2013) classified it as mi-
gratory, and Miniopterus schreibersii was a long-distance migrant 
in the work of Burns and Broder (2014), whereas we initially 
considered it a regional migrant), we repeated the analysis using 
the alternative classification.

Species were also classified by mating strategy (Supporting 
Information, Table S3), in groupings of single male/single fe-
male (i.e. monogamy), single male/multi-female (i.e. harem), 
and multi-male/multi-female (i.e. both sexes mate promiscu-
ously) used in other work (McCracken and Wilkinson 2000). 
These are simplistic categories, because harem-forming species 
can exhibit varying degrees of promiscuity, but they provide 
the most comparable classification to previous research (Olival 
2012). Where there was a lack of information about the mating 

strategy of a species, we either did not include that species in the 
analysis (e.g. Myotis thysanodes) or made an assumption based 
on the behaviour of a close congener (e.g. Carollia castanea is as-
sumed to have a similar mating strategy to its well-studied rela-
tive Carollia perspicillata, and Nyctalus lasiopterus is assumed to 
be similar to other noctules). As with the migration class-based 
models, we repeated the analysis with the alternative classifica-
tion to examine the possibility that ambiguous classifications 
might have biased our results.

Population genetics across species
We first examined differences in population genetic measures 
among species without modelling other variables. In the statis-
tical computing environment R v.4.2.1, the packages tidyverse 
v.2.0.0, tidybayes v.3.0.3, ggbeeswarm v.0.7.1, and patch-
work v.1.1.2 were useful for data management and model visu-
alization (Bürkner 2018, Wickham et al. 2019, Pedersen 2022, 
R Core Team 2022, Kay 2023). The package brms v.2.18.0 was 
used for all Bayesian modelling (Bürkner 2018).

We then examined differences in population genetic measures 
across species by fitting a series of models with species identity 
as a fixed effect. The three population genetic measures used 
were genetic differentiation, gene diversity (also called expected 
heterozygosity), and allelic richness (Nei and Chesser 1983, 
Weir and Goudet 2017). Each Bayesian model was fitted with 
a Gaussian distribution, using four independent Hamiltonian 
Monte Carlo chains across 5000 warm-up and 15 000 sam-
pling iterations each (60 000 sampling iterations total). For 
the models analysing genetic differentiation or gene diversity, 
normal priors of mean zero and standard deviation one were 
used for global intercepts and model coefficients. For the model 
analysing allelic richness, we used normal priors of mean zero 
and standard deviation five. A different standard deviation was 
used for allelic richness because it had a wider numerical range 
than each of genetic differentiation and gene diversity. In all 

Figure 1. Map of bat genetic data-sampling locations. Sampling locations are coloured by species. A total of 12 species, 228 sampling groups, 
and 7618 individuals were used for analyses of genetic differentiation, and 17 species, 233 sampling groups, and 8095 individuals were used for 
analyses of gene diversity and allelic richness.

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/advance-article/doi/10.1093/biolinnean/blae068/7718019 by guest on 27 February 2025

http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae068#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae068#supplementary-data
http://academic.oup.com/biolinnean/article-lookup/doi/10.1093/biolinnean/blae068#supplementary-data


4  •  Korpach et al.

models, adapt delta was raised to 0.99 and maximum tree depth 
raised to 16 to achieve sufficient sampling of the posterior distri-
bution. Model fit was assessed with the potential scale reduction 
statistic Ȓ, visual inspection of trace plots, and visual inspection 
of posterior predictive checks over 100 draws in each model. 
Models were accepted only if Ȓ was 1.00 for all parameters. The 
R package emmeans v.1.8.4-1 (Searle et al. 1980) was used to 
gather posterior draws for visualization and for estimating mar-
ginal means to compare 95% highest posterior density in a pair-
wise manner between species.

Correlations between genetic and life-history traits
We used a Bayesian approach to model potential relationships 
between migration or mating strategy and population genetic 
measures. The same statistical programs and packages were used 
for these models as in the models of population genetics across 
species. Bayesian models were fitted with the following model 
structure in R:

population genetic measure ∼
(migration strategy or mating system)

+ (1 | species)
+ (1 | phylogenetic correlation matrix)
+ (spatial simultaneous autoregressive structure)

Here, genetic differentiation, gene diversity, and allelic richness 
were each used as population genetic measures. Six models were 
thus run: three population genetic measures compared against 
migration strategy and three against mating strategy.

Both migration and mating strategy were modelled as fixed ef-
fects. Species was included as a random intercept to address fac-
tors independent of phylogenetic relatedness that might cause 
differences in species means for each genetic metric, such as 
niche or environmental effects (Hadfield and Nakagawa 2010). 
A phylogenetic correlation matrix was also included as a random 
effect to address evolutionary relatedness among the bat species 
used in the present analyses. This phylogeny was created by using 
the R package taxize v.0.9.00 to retrieve the taxonomic classi-
fications and hierarchy for the list of species from the National 
Center for Biotechnology Information database using the func-
tions classification and class2tree (Supporting Information, Fig. 
S1) (Chamberlain and Szöcs 2013). With this taxonomic tree, 
the R package ape v.5.7 was used to calculate the phylogenetic 
correlation matrix used in each model with vcv.phylo (Paradis 
and Schliep 2019). Model priors, distributions, sampling param-
eters, and contrasts were set and assessed with the same methods 
as in the models of population genetic measures across species. 
We initially constructed models without spatial autoregressive 
terms and used the package DHARMa v.0.4.6 to identify weak 
spatial autocorrelation among sample sites in some models 
(0.05–0.12 Moran’s I) (Hartig 2022). To address the potential 
for spatial autocorrelation to affect the results, we used spatial 
autoregressive terms in brms with the sar function in all models. 
Specifically, K = 4 nearest neighbours for each point were used 
in a connection network of sampling locations in the R package 
adespatial v.0.3-21, as a balance between connectivity at local 
and regional scales. This network was used for specifying the spa-
tial weighting matrix in the spatial simultaneous autoregressive 
structure, with type ‘lag’ chosen to model response variables.

R E SU LTS
We identified six non-migratory, seven regional, and three 
long-distance migrants in our dataset (Fig. 2). Of these, most 
non-migratory bats had a single male/multi-female mating 
system, whereas more regional and long-distance species had 
multi-male/multi female mating systems (Fig. 2). Across spe-
cies, the serotine bat (Eptesicus serotinus) and common bent-
wing bat (Miniopterus schreibersii) tended to have higher genetic 
differentiation and lower gene diversity and allelic richness than 
certain other species, such as the Jamaican fruit bat (Artibeus 
jamaicensis) or chestnut short-tailed bat (C. castanea) (Fig. 2; 
Supporting Information, Tables S4–S6). Overall, these results 
revealed species-specific differences in population-specific dif-
ferentiation and genetic variation. We observed no differences 
in any comparison between migration or mating strategies using 
95% highest posterior density intervals (Fig. 3; Supporting 
Information, Tables S7 and S8). Results from models using 
alternative mating and migration strategy classifications were 
consistent with the original models (Supporting Information, 
Fig. S2).

D I S C U S S I O N
Despite species-level differences in population genetic measures, 
our results do not support the hypothesis that a long-distance mi-
gratory tendency leads to more genetic mixing than other migra-
tion strategies, even for species that are expected to mate during 
migration (Fig. 3). This result remains consistent when using an 
alternative migration classification for Myotis blythii (following 
the classification by Moussy et al. 2013). In analyses using all ac-
cessible microsatellite data, it appears that bats maintain genetic 
variation despite differences in these behaviours and that the 
high mobility of bats in general is sufficient to maintain genetic 
connectivity for most species. These results are consistent with 
conclusion drawn by Fleming and Martino (2020) that bat spe-
cies, assuming sufficiently large populations, are likely to have 
ample genetic variation.

Given the evidence in the literature that suggests a causal link 
between migratory behaviour and genetic variation in bats (Bryja 
et al. 2008, Olival 2012, Moussy et al. 2013, Burns and Broders 
2014), we had expected populations of species with longer mi-
gration distances and more promiscuous mating behaviour to 
mix more, resulting in weaker population structure. It is possible 
that high correlation between migratory behaviour and mating 
strategy (as reported in this study) could have led past researchers 
to attribute genetic structure to movement characteristics instead 
of promiscuity during mating (e.g. all long-distance migratory 
species in our study were also classified as having promiscuous 
[multi-male/multi-female] mating strategies). It is also possible 
that migration distance is generally a weak predictor of popula-
tion mixing, even in species that are known to mate during mi-
gration. Measures of high dispersal ability (e.g. wing morphology 
designed for fast and efficient flight) have been better predictors 
of low population structure in bats (Burland and Worthington 
Wilmer 2001, Olival 2012, Taylor et al. 2012, Moussy et al. 2013, 
Burns and Broders 2014), although long-distance migrants and 
high dispersers tend to share similar morphological character-
istics, and migration has sometimes been described as a form 
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of dispersal in bat species that mate during migration (Popa-
Lisseanu and Voigt 2009, Burns and Broders 2014). Bat species 
with morphological features designed for fast and efficient flights 
would be able to mix far and wide at mating sites, whether they 
are migrants or non-migrants, which could explain the stronger 
correlation between dispersal ability (wing morphology) and 
population genetic structure than between migration distance 
and population genetic structure.

It is unclear why we did not find any difference in genetic 
measures between species that mate in single male/multi-female 
groups and species where both species are promiscuous. Of the 
six non-migratory species in our study, two were classified to 
have multi-male/multi-female mating systems, and of the nine 
migratory species, one was classified with a single male/multi-
female mating system. These three species with anomalous be-
haviours (i.e. migration and mating systems did not follow the 
general trend) did not differ in genetic structure when compared 
with the rest of the species in the dataset, and reclassifying them 
to the alternative mating system did not change our results. An 
association between mating system and genetic structure is not 
straightforward, because some bat species that form harems ex-
hibit higher-than-expected levels of promiscuity (Heckel and 
Von Helversen 2003, Garg et al. 2012), which could lead to weak-
ened genetic structure among populations (Olival 2012). For 
example, in bats with polygynous harem-based mating systems, 
extra-harem mating can account for 70% of paternity (Heckel 

and Von Helversen 2003). Therefore, clear-cut genetic structure 
in bat populations might defy the simple mating strategy classi-
fications that we used.

Migration strategies are also not easily categorized, be-
cause many species are partial migrants, with some popula-
tions migrating in a different manner to others. For example, 
stable isotope analysis revealed high variation in the migratory 
movements of Lasionycterus noctivagans (Fraser et al. 2017). 
Within partially migratory species, non-migratory populations 
can have greater genetic structure (e.g. Eidolon helvum) ( Juste, 
Ibáñez and Machordom 2000, Peel et al. 2013), but this is not 
always the case (e.g. Tadarida brasiliensis Mexicana) (Russell 
et al. 2005). In species where all populations are migratory, 
those populations with low migratory connectivity can have 
greater genetic structure, possibly reflecting genetic isolation 
by distance (e.g. Myotis lucifugus) (Vonhof and Russell 2015, 
Wilder et al. 2015). Nevertheless, the migration classes we used 
are likely to be useful for the purposes of general classification 
to investigate broad trends. Non-migratory bat species (e.g. A. 
jamaicensis and C. castanea) are obviously highly vagile, as are all 
bats, but they undeniably move much shorter annual distances 
than long-distance migrants (e.g. Lasionycterus noctivagans and 
Lasiurus cinereus). Studies that track migration movements dir-
ectly and discern the mating locations and promiscuity of spe-
cific populations are required to reconcile fully the influences of 
those movement-related behavioural traits on genetic structure.

Figure 2. A, bar plot of migration and mating strategies across the bat species used in the present study. B–D, estimates of gene diversity (B), 
genetic differentiation (C), and allelic richness (D) across species. Posterior distributions are in blue, 95% credible intervals are indicated by 
thin black lines, and 66% credible intervals by thick black lines. Group-level data points used for modelling genetic measures across species are 
in light grey, and species labels are consistent on the x-axis for B and D.
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Some disparities in the migratory classification of species 
could, hypothetically, explain the difference between our results 
and previous studies, but the species composition of our dataset 
had little overlap with those previous studies. Where there was 
overlap, there were only two cases where our classifications did 
not agree. We classified Myotis blythii as non-migratory, whereas 
Moussy et al. (2013) classified it as migratory. This disparity 
could be attributable to the latter’s liberal definitions of "migra-
tory" to include all facultative and partial migration and "non-
migratory" to include seasonal relocations typically <100 km. 
Although we used similar classification guidelines to Burns and 
Broder (2014), those authors classified Miniopterus schreibersii 
as a long-distance migrant, whereas we classified it as a regional 
migrant; Olival (2012) and Moussy et al. (2013) simply classi-
fied it as migratory. In the case of Miniopterus schreibersii, bats 
at mating roosts are more likely to mate with individuals from 
outside their own colony and populations are significantly dif-
ferentiated, but how nursing, mating, and hibernation roosts are 
linked to migration patterns is still unclear (Ramos Pereira et al. 

2009). Reanalyses of our dataset that excluded or reassigned 
species with uncertainty surrounding their behavioural classifi-
cation showed that the uncertainty did not change our results. 
We were unable to detect differences in genetic measures be-
tween migratory or mating classes regardless of how those spe-
cies were classified.

Several factors could be responsible for the measurable gen-
etic variation among species that could not be explained by mi-
gratory or mating behaviour in our study. Availability of food 
resources might influence short-term movement patterns on 
the breeding grounds; for instance, frugivorous or nectivorous 
bats might need to move further or more frequently than in-
sectivorous bats, because insects are typically a more stable 
food source (Webb and Tidemann 1996, Moreno-Valdez et al. 
2004, Bontadina et al. 2008). Thus, for two species with similar 
mating strategies, frugivorous bats might incidentally have more 
genetic mixing because they are exposed to more individuals 
outside their populations while moving around to find food. 
However, species with lower tolerance to human disturbance or 

Figure 3. Estimates of population genetic differentiation, gene diversity, and allelic richness compared between migration strategies (non-
migratory, regional, or long-distance) and mating strategies (single male/multi-female or multi-male/multi-female) in bats. Posterior 
distributions are in grey, 95% credible intervals are indicated by thin black lines, 66% credible intervals are indicated by thick black lines, and 
group-level data points used for modelling genetic measures are coloured by species.
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with more specialized diets could have more limited movements 
across the landscape, hence reduced gene flow (Ripperger et al. 
2014, McCulloch and Waters 2023). Finally, historical events 
can confound landscape-level effects that we might be tempted 
to attribute to ecology or behaviours such as migration or social 
structure (Hewitt 2000).

The variability in sample distribution and quantity across spe-
cies in our study could affect the representation of different types 
of migration or mating strategies. For example, some species were 
sampled much more than others (ranging from 3104 bats from 
66 sample sites [Myotis lucifugus] to six bats from one sample 
site [Myotis thysanodes]). If the full spatial extents of respective 
ranges of each species are not sampled, measures of genetic dif-
ferentiation could be reduced artificially. We also assumed that 
distances moved during migration relative to range sizes did not 
affect the categorization of migratory strategies. Additionally, 
describing spatial genetic structure in populations requires con-
sideration of multiple seasons, such as summer maternity roosts, 
swarming sites, and hibernacula (Davy et al. 2015). Variation in 
the timing of sampling collection across species made it difficult 
to parse out seasonal effects on population structure overall, and 
we assumed that samples came from genetic populations based 
on sampling sites. However, we can at least conclude that site-
specific genetic differentiation and variation were not associated 
with migration or breeding strategy.

Genetics might, nevertheless, be related to migration or 
mating strategies, even if the relationship is weak in bats. Genetic 
variation was found to have a small to moderate influence on 
variance in migration timing in purple martins (Progne subis), 
with a particularly strong signal on one chromosome (de Greef 
et al. 2023). Therefore, a locus-specific analysis (such as a large 
genome-wide association study) might have been necessary to 
establish individual-level connections between the observed 
traits and genetics. Rather, we show that there is a minimal ef-
fect of the migration or mating strategy on neutral variation 
and population structure in bats. Widespread phenotypic shifts 
might have induced prior shifts in gene flow or related processes 
in bats because of environmental change (Smeraldo et al. 2021), 
which might have altered the dynamics of how genotypes reflect 
phenotypes.

Genetic variation and connectivity underlie adaptive po-
tential and thus population resilience to future environmental 
change, which bodes well for maintaining genetic connectivity 
and minimizing genetic diversity losses in recovering bat popu-
lations. In birds, long-distance migrants are especially vulnerable 
to global change and human land use, and climate change can 
restrict long-distance migratory behaviours (Visser et al. 2009, 
Zurell et al. 2018). The dynamics of evolution are context spe-
cific, and our data highlight gaps in our understanding about the 
circumstances in which a trait or behaviour becomes a driver of 
genetic diversity. A greater understanding of the push and pull 
between traits (such as specific behaviours), genetic diversity, 
and gene flow across a landscape would provide substantial 
power for explaining and conserving biodiversity worldwide.
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